This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013) (Revised by Mario Carneiro, 22-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsplit.1 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| fsumsplit.2 | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | ||
| fsumsplit.3 | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | ||
| fsumsplit.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) | ||
| Assertion | fsumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsplit.1 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 2 | fsumsplit.2 | ⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) | |
| 3 | fsumsplit.3 | ⊢ ( 𝜑 → 𝑈 ∈ Fin ) | |
| 4 | fsumsplit.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) | |
| 5 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 6 | 5 2 | sseqtrrid | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) |
| 7 | 6 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝑈 ) |
| 8 | 7 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 9 | 8 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 10 | 3 | olcd | ⊢ ( 𝜑 → ( 𝑈 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝑈 ∈ Fin ) ) |
| 11 | sumss2 | ⊢ ( ( ( 𝐴 ⊆ 𝑈 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) ∧ ( 𝑈 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝑈 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) | |
| 12 | 6 9 10 11 | syl21anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ) |
| 13 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 14 | 13 2 | sseqtrrid | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 15 | 14 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝑘 ∈ 𝑈 ) |
| 16 | 15 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 17 | 16 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) |
| 18 | sumss2 | ⊢ ( ( ( 𝐵 ⊆ 𝑈 ∧ ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ℂ ) ∧ ( 𝑈 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝑈 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) | |
| 19 | 14 17 10 18 | syl21anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) |
| 20 | 12 19 | oveq12d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) = ( Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 21 | 0cn | ⊢ 0 ∈ ℂ | |
| 22 | ifcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) | |
| 23 | 4 21 22 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) ∈ ℂ ) |
| 24 | ifcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ∈ ℂ ) | |
| 25 | 4 21 24 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ∈ ℂ ) |
| 26 | 3 23 25 | fsumadd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = ( Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + Σ 𝑘 ∈ 𝑈 if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) ) |
| 27 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 ↔ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 28 | elun | ⊢ ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) | |
| 29 | 27 28 | bitrdi | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑈 ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) ) |
| 30 | 29 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) |
| 31 | iftrue | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 𝐶 ) |
| 33 | noel | ⊢ ¬ 𝑘 ∈ ∅ | |
| 34 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑘 ∈ ∅ ) ) |
| 35 | elin | ⊢ ( 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) | |
| 36 | 34 35 | bitr3di | ⊢ ( 𝜑 → ( 𝑘 ∈ ∅ ↔ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
| 37 | 33 36 | mtbii | ⊢ ( 𝜑 → ¬ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) |
| 38 | imnan | ⊢ ( ( 𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵 ) ↔ ¬ ( 𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) | |
| 39 | 37 38 | sylibr | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵 ) ) |
| 40 | 39 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 ∈ 𝐵 ) |
| 41 | 40 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) = 0 ) |
| 42 | 32 41 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = ( 𝐶 + 0 ) ) |
| 43 | 8 | addridd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 + 0 ) = 𝐶 ) |
| 44 | 42 43 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = 𝐶 ) |
| 45 | 39 | con2d | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 → ¬ 𝑘 ∈ 𝐴 ) ) |
| 46 | 45 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ¬ 𝑘 ∈ 𝐴 ) |
| 47 | 46 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) = 0 ) |
| 48 | iftrue | ⊢ ( 𝑘 ∈ 𝐵 → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) = 𝐶 ) | |
| 49 | 48 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) = 𝐶 ) |
| 50 | 47 49 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = ( 0 + 𝐶 ) ) |
| 51 | 16 | addlidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 0 + 𝐶 ) = 𝐶 ) |
| 52 | 50 51 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = 𝐶 ) |
| 53 | 44 52 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = 𝐶 ) |
| 54 | 30 53 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = 𝐶 ) |
| 55 | 54 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 ( if ( 𝑘 ∈ 𝐴 , 𝐶 , 0 ) + if ( 𝑘 ∈ 𝐵 , 𝐶 , 0 ) ) = Σ 𝑘 ∈ 𝑈 𝐶 ) |
| 56 | 20 26 55 | 3eqtr2rd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑈 𝐶 = ( Σ 𝑘 ∈ 𝐴 𝐶 + Σ 𝑘 ∈ 𝐵 𝐶 ) ) |