This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl .) Lemma 565Ca of Fremlin5 p. 214. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| Assertion | uniioombl | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 2 | uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 4 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 5 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 6 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 7 | 5 6 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 8 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) | |
| 9 | 1 7 8 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 10 | fco | ⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) | |
| 11 | 4 9 10 | sylancr | ⊢ ( 𝜑 → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
| 12 | 11 | frnd | ⊢ ( 𝜑 → ran ( (,) ∘ 𝐹 ) ⊆ 𝒫 ℝ ) |
| 13 | sspwuni | ⊢ ( ran ( (,) ∘ 𝐹 ) ⊆ 𝒫 ℝ ↔ ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) | |
| 14 | 12 13 | sylib | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) |
| 15 | elpwi | ⊢ ( 𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ ) | |
| 16 | 15 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → 𝑧 ⊆ ℝ ) |
| 17 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) | |
| 18 | rphalfcl | ⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) | |
| 19 | 18 | rphalfcld | ⊢ ( 𝑟 ∈ ℝ+ → ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ ) |
| 20 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) | |
| 21 | 20 | ovolgelb | ⊢ ( ( 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ∧ ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) |
| 22 | 16 17 19 21 | syl2an3an | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) |
| 23 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 24 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 25 | eqid | ⊢ ∪ ran ( (,) ∘ 𝐹 ) = ∪ ran ( (,) ∘ 𝐹 ) | |
| 26 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
| 27 | 26 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( vol* ‘ 𝑧 ) ∈ ℝ ) |
| 28 | 18 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 29 | 28 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 30 | 29 | rphalfcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( ( 𝑟 / 2 ) / 2 ) ∈ ℝ+ ) |
| 31 | elmapi | ⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 32 | 31 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 33 | simprrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) | |
| 34 | simprrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) | |
| 35 | 23 24 3 25 27 30 32 33 20 34 | uniioombllem6 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝑧 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑧 ) + ( ( 𝑟 / 2 ) / 2 ) ) ) ) ) → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) ) ) |
| 36 | 22 35 | rexlimddv | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) ) ) |
| 37 | rpcn | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℂ ) | |
| 38 | 37 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℂ ) |
| 39 | 2cnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 2 ∈ ℂ ) | |
| 40 | 2ne0 | ⊢ 2 ≠ 0 | |
| 41 | 40 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 2 ≠ 0 ) |
| 42 | 38 39 39 41 41 | divdiv1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑟 / 2 ) / 2 ) = ( 𝑟 / ( 2 · 2 ) ) ) |
| 43 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 44 | 43 | oveq2i | ⊢ ( 𝑟 / ( 2 · 2 ) ) = ( 𝑟 / 4 ) |
| 45 | 42 44 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑟 / 2 ) / 2 ) = ( 𝑟 / 4 ) ) |
| 46 | 45 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) = ( 4 · ( 𝑟 / 4 ) ) ) |
| 47 | 4cn | ⊢ 4 ∈ ℂ | |
| 48 | 47 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 4 ∈ ℂ ) |
| 49 | 4ne0 | ⊢ 4 ≠ 0 | |
| 50 | 49 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → 4 ≠ 0 ) |
| 51 | 38 48 50 | divcan2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 4 · ( 𝑟 / 4 ) ) = 𝑟 ) |
| 52 | 46 51 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) = 𝑟 ) |
| 53 | 52 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( vol* ‘ 𝑧 ) + ( 4 · ( ( 𝑟 / 2 ) / 2 ) ) ) = ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) |
| 54 | 36 53 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) |
| 55 | 54 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ∀ 𝑟 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) |
| 56 | inss1 | ⊢ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 | |
| 57 | 56 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 ) |
| 58 | ovolsscl | ⊢ ( ( ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ ) | |
| 59 | 57 16 17 58 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ ) |
| 60 | difssd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 ) | |
| 61 | ovolsscl | ⊢ ( ( ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ ) | |
| 62 | 60 16 17 61 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ∈ ℝ ) |
| 63 | 59 62 | readdcld | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ∈ ℝ ) |
| 64 | alrple | ⊢ ( ( ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ∈ ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) → ( ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑟 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) ) | |
| 65 | 63 17 64 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ↔ ∀ 𝑟 ∈ ℝ+ ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( ( vol* ‘ 𝑧 ) + 𝑟 ) ) ) |
| 66 | 55 65 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝒫 ℝ ∧ ( vol* ‘ 𝑧 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) |
| 67 | 66 | expr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝒫 ℝ ) → ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) |
| 68 | 67 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) |
| 69 | ismbl2 | ⊢ ( ∪ ran ( (,) ∘ 𝐹 ) ∈ dom vol ↔ ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑧 ) ∈ ℝ → ( ( vol* ‘ ( 𝑧 ∩ ∪ ran ( (,) ∘ 𝐹 ) ) ) + ( vol* ‘ ( 𝑧 ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) ≤ ( vol* ‘ 𝑧 ) ) ) ) | |
| 70 | 14 68 69 | sylanbrc | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ∈ dom vol ) |