This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function is finitely sub-additive. (Unlike the stronger ovoliun , this does not require any choice principles.) (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolun | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) | |
| 2 | simplr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) | |
| 3 | simpr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 4 | 1 2 3 | ovolunlem2 | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ∧ 𝑥 ∈ ℝ+ ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝑥 ) ) |
| 5 | 4 | ralrimiva | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ∀ 𝑥 ∈ ℝ+ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝑥 ) ) |
| 6 | unss | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) | |
| 7 | 6 | biimpi | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) |
| 8 | 7 | ad2ant2r | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) |
| 9 | ovolcl | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) |
| 11 | readdcl | ⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ∈ ℝ ) | |
| 12 | 11 | ad2ant2l | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ∈ ℝ ) |
| 13 | xralrple | ⊢ ( ( ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ∈ ℝ ) → ( ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ↔ ∀ 𝑥 ∈ ℝ+ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝑥 ) ) ) | |
| 14 | 10 12 13 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ↔ ∀ 𝑥 ∈ ℝ+ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝑥 ) ) ) |
| 15 | 5 14 | mpbird | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) |