This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | ||
| uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | ||
| uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | ||
| uniioombl.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| uniioombl.m2 | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) | ||
| uniioombl.k | ⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) | ||
| uniioombl.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| uniioombl.n2 | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑀 ) ) | ||
| uniioombl.l | ⊢ 𝐿 = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) | ||
| Assertion | uniioombllem4 | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 2 | uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 4 | uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | |
| 5 | uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 6 | uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 7 | uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 8 | uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | |
| 9 | uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 10 | uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | |
| 11 | uniioombl.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 12 | uniioombl.m2 | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) | |
| 13 | uniioombl.k | ⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) | |
| 14 | uniioombl.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 15 | uniioombl.n2 | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑀 ) ) | |
| 16 | uniioombl.l | ⊢ 𝐿 = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) | |
| 17 | inss1 | ⊢ ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 | |
| 18 | imassrn | ⊢ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ⊆ ran ( (,) ∘ 𝐺 ) | |
| 19 | 18 | unissi | ⊢ ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
| 20 | 13 19 | eqsstri | ⊢ 𝐾 ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
| 21 | 7 | uniiccdif | ⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐺 ) ∖ ∪ ran ( (,) ∘ 𝐺 ) ) ) = 0 ) ) |
| 22 | 21 | simpld | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
| 23 | ovolficcss | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) | |
| 24 | 7 23 | syl | ⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) |
| 25 | 22 24 | sstrd | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ) |
| 26 | 20 25 | sstrid | ⊢ ( 𝜑 → 𝐾 ⊆ ℝ ) |
| 27 | 1 2 3 4 5 6 7 8 9 10 | uniioombllem1 | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 28 | ssid | ⊢ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) | |
| 29 | 9 | ovollb | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 30 | 7 28 29 | sylancl | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 31 | ovollecl | ⊢ ( ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) | |
| 32 | 25 27 30 31 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) |
| 33 | ovolsscl | ⊢ ( ( 𝐾 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ 𝐾 ) ∈ ℝ ) | |
| 34 | 20 25 32 33 | mp3an2i | ⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
| 35 | ovolsscl | ⊢ ( ( ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) | |
| 36 | 17 26 34 35 | mp3an2i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) |
| 37 | inss1 | ⊢ ( 𝐾 ∩ 𝐿 ) ⊆ 𝐾 | |
| 38 | ovolsscl | ⊢ ( ( ( 𝐾 ∩ 𝐿 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℝ ) | |
| 39 | 37 26 34 38 | mp3an2i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℝ ) |
| 40 | ssun2 | ⊢ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 41 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 42 | 14 | peano2nnd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 43 | 42 41 | eleqtrdi | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 44 | uzsplit | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( 𝜑 → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 46 | 41 45 | eqtrid | ⊢ ( 𝜑 → ℕ = ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 47 | 14 | nncnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 48 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 49 | pncan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 50 | 47 48 49 | sylancl | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 51 | 50 | oveq2d | ⊢ ( 𝜑 → ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 1 ... 𝑁 ) ) |
| 52 | 51 | uneq1d | ⊢ ( 𝜑 → ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 1 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 53 | 46 52 | eqtrd | ⊢ ( 𝜑 → ℕ = ( ( 1 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 54 | 53 | iuneq1d | ⊢ ( 𝜑 → ∪ 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ∪ 𝑖 ∈ ( ( 1 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 55 | iunxun | ⊢ ∪ 𝑖 ∈ ( ( 1 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 56 | 54 55 | eqtrdi | ⊢ ( 𝜑 → ∪ 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 57 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 58 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 59 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 60 | 58 59 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 61 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) | |
| 62 | 1 60 61 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 63 | fco | ⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) | |
| 64 | 57 62 63 | sylancr | ⊢ ( 𝜑 → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
| 65 | ffn | ⊢ ( ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ → ( (,) ∘ 𝐹 ) Fn ℕ ) | |
| 66 | fniunfv | ⊢ ( ( (,) ∘ 𝐹 ) Fn ℕ → ∪ 𝑖 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ ran ( (,) ∘ 𝐹 ) ) | |
| 67 | 64 65 66 | 3syl | ⊢ ( 𝜑 → ∪ 𝑖 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 68 | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑖 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 69 | 1 68 | sylan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 70 | 69 | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑖 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 71 | 67 70 | eqtr3d | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) = ∪ 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 72 | 4 71 | eqtrid | ⊢ ( 𝜑 → 𝐴 = ∪ 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 73 | ffun | ⊢ ( ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ → Fun ( (,) ∘ 𝐹 ) ) | |
| 74 | funiunfv | ⊢ ( Fun ( (,) ∘ 𝐹 ) → ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ) | |
| 75 | 64 73 74 | 3syl | ⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ) |
| 76 | elfznn | ⊢ ( 𝑖 ∈ ( 1 ... 𝑁 ) → 𝑖 ∈ ℕ ) | |
| 77 | 1 76 68 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 78 | 77 | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 79 | 75 78 | eqtr3d | ⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) = ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 80 | 16 79 | eqtrid | ⊢ ( 𝜑 → 𝐿 = ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 81 | 80 | uneq1d | ⊢ ( 𝜑 → ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 82 | 56 72 81 | 3eqtr4d | ⊢ ( 𝜑 → 𝐴 = ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 83 | 82 | ineq2d | ⊢ ( 𝜑 → ( 𝐾 ∩ 𝐴 ) = ( 𝐾 ∩ ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 84 | indi | ⊢ ( 𝐾 ∩ ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) = ( ( 𝐾 ∩ 𝐿 ) ∪ ( 𝐾 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | |
| 85 | 83 84 | eqtrdi | ⊢ ( 𝜑 → ( 𝐾 ∩ 𝐴 ) = ( ( 𝐾 ∩ 𝐿 ) ∪ ( 𝐾 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 86 | fss | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) | |
| 87 | 7 60 86 | sylancl | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 88 | fco | ⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ ) | |
| 89 | 57 87 88 | sylancr | ⊢ ( 𝜑 → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ ) |
| 90 | ffun | ⊢ ( ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ → Fun ( (,) ∘ 𝐺 ) ) | |
| 91 | funiunfv | ⊢ ( Fun ( (,) ∘ 𝐺 ) → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ) | |
| 92 | 89 90 91 | 3syl | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ) |
| 93 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℕ ) | |
| 94 | fvco3 | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) | |
| 95 | 7 93 94 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 96 | 95 | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( (,) ∘ 𝐺 ) ‘ 𝑗 ) = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 97 | 92 96 | eqtr3d | ⊢ ( 𝜑 → ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 98 | 13 97 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 99 | 98 | ineq2d | ⊢ ( 𝜑 → ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ 𝐾 ) = ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 100 | incom | ⊢ ( 𝐾 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ 𝐾 ) | |
| 101 | iunin2 | ⊢ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 102 | incom | ⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 103 | 102 | a1i | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 104 | 103 | iuneq2i | ⊢ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 105 | incom | ⊢ ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 106 | 101 104 105 | 3eqtr4ri | ⊢ ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 107 | 106 | a1i | ⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 108 | 107 | iuneq2i | ⊢ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 109 | iunin2 | ⊢ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) | |
| 110 | 108 109 | eqtr3i | ⊢ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) |
| 111 | 99 100 110 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐾 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 112 | 111 | uneq2d | ⊢ ( 𝜑 → ( ( 𝐾 ∩ 𝐿 ) ∪ ( 𝐾 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) = ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 113 | 85 112 | eqtrd | ⊢ ( 𝜑 → ( 𝐾 ∩ 𝐴 ) = ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 114 | 40 113 | sseqtrrid | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( 𝐾 ∩ 𝐴 ) ) |
| 115 | 114 17 | sstrdi | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ) |
| 116 | ovolsscl | ⊢ ( ( ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) | |
| 117 | 115 26 34 116 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 118 | 39 117 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ∈ ℝ ) |
| 119 | 6 | rpred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 120 | 39 119 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ∈ ℝ ) |
| 121 | 113 | fveq2d | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) = ( vol* ‘ ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 122 | 37 26 | sstrid | ⊢ ( 𝜑 → ( 𝐾 ∩ 𝐿 ) ⊆ ℝ ) |
| 123 | 115 26 | sstrd | ⊢ ( 𝜑 → ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ) |
| 124 | ovolun | ⊢ ( ( ( ( 𝐾 ∩ 𝐿 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℝ ) ∧ ( ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) | |
| 125 | 122 39 123 117 124 | syl22anc | ⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐾 ∩ 𝐿 ) ∪ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 126 | 121 125 | eqbrtrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 127 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) | |
| 128 | iunss | ⊢ ( ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ↔ ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ) | |
| 129 | 115 128 | sylib | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ) |
| 130 | 129 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ) |
| 131 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐾 ⊆ ℝ ) |
| 132 | 34 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
| 133 | ovolsscl | ⊢ ( ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) | |
| 134 | 130 131 132 133 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 135 | 127 134 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 136 | 130 131 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ) |
| 137 | 136 134 | jca | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) |
| 138 | 137 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) |
| 139 | ovolfiniun | ⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) | |
| 140 | 127 138 139 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 141 | 119 11 | nndivred | ⊢ ( 𝜑 → ( 𝐶 / 𝑀 ) ∈ ℝ ) |
| 142 | 141 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐶 / 𝑀 ) ∈ ℝ ) |
| 143 | 80 | ineq2d | ⊢ ( 𝜑 → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 144 | 143 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 145 | 102 | a1i | ⊢ ( 𝑖 ∈ ( 1 ... 𝑁 ) → ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 146 | 145 | iuneq2i | ⊢ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 147 | iunin2 | ⊢ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 148 | 146 147 | eqtri | ⊢ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 149 | 144 148 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) = ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 150 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 151 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 152 | 1 76 151 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 153 | 152 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ( ℝ × ℝ ) ) |
| 154 | 1st2nd2 | ⊢ ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑖 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 ) | |
| 155 | 153 154 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 ) |
| 156 | 155 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 ) ) |
| 157 | df-ov | ⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) 〉 ) | |
| 158 | 156 157 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 159 | ioombl | ⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑖 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑖 ) ) ) ∈ dom vol | |
| 160 | 158 159 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ dom vol ) |
| 161 | 160 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ dom vol ) |
| 162 | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 163 | 7 93 162 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 164 | 163 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) ) |
| 165 | 1st2nd2 | ⊢ ( ( 𝐺 ‘ 𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) | |
| 166 | 164 165 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑗 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) |
| 167 | 166 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) ) |
| 168 | df-ov | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) 〉 ) | |
| 169 | 167 168 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) = ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 170 | ioombl | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol | |
| 171 | 169 170 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ dom vol ) |
| 172 | 171 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ dom vol ) |
| 173 | inmbl | ⊢ ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ dom vol ∧ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ dom vol ) → ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) | |
| 174 | 161 172 173 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) |
| 175 | 174 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) |
| 176 | finiunmbl | ⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) → ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) | |
| 177 | 150 175 176 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ) |
| 178 | 149 177 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ∈ dom vol ) |
| 179 | inss2 | ⊢ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ⊆ 𝐴 | |
| 180 | 1 | uniiccdif | ⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐹 ) ∖ ∪ ran ( (,) ∘ 𝐹 ) ) ) = 0 ) ) |
| 181 | 180 | simpld | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) |
| 182 | ovolficcss | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) | |
| 183 | 1 182 | syl | ⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
| 184 | 181 183 | sstrd | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) |
| 185 | 4 184 | eqsstrid | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 186 | 185 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐴 ⊆ ℝ ) |
| 187 | 179 186 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ⊆ ℝ ) |
| 188 | inss1 | ⊢ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) | |
| 189 | ioossre | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ℝ | |
| 190 | 169 189 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 191 | 169 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 192 | ovolfcl | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 193 | 7 93 192 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 194 | ovolioo | ⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 195 | 193 194 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 196 | 191 195 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 197 | 193 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 198 | 193 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ∈ ℝ ) |
| 199 | 197 198 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑗 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 200 | 196 199 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 201 | ovolsscl | ⊢ ( ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∧ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ∈ ℝ ) | |
| 202 | 188 190 200 201 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ∈ ℝ ) |
| 203 | mblsplit | ⊢ ( ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ∈ dom vol ∧ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) = ( ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) + ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) ) ) | |
| 204 | 178 187 202 203 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) = ( ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) + ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) ) ) |
| 205 | imassrn | ⊢ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ⊆ ran ( (,) ∘ 𝐹 ) | |
| 206 | 205 | unissi | ⊢ ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) |
| 207 | 206 16 4 | 3sstr4i | ⊢ 𝐿 ⊆ 𝐴 |
| 208 | sslin | ⊢ ( 𝐿 ⊆ 𝐴 → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ⊆ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) | |
| 209 | 207 208 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ⊆ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) |
| 210 | sseqin2 | ⊢ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ⊆ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ↔ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) | |
| 211 | 209 210 | sylib | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) |
| 212 | 211 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) |
| 213 | indifdir | ⊢ ( ( 𝐴 ∖ 𝐿 ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( 𝐴 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∖ ( 𝐿 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) | |
| 214 | incom | ⊢ ( 𝐴 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) | |
| 215 | incom | ⊢ ( 𝐿 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) | |
| 216 | 214 215 | difeq12i | ⊢ ( ( 𝐴 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∖ ( 𝐿 ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) |
| 217 | 213 216 | eqtri | ⊢ ( ( 𝐴 ∖ 𝐿 ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) |
| 218 | 82 | eqcomd | ⊢ ( 𝜑 → ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = 𝐴 ) |
| 219 | 80 | ineq1d | ⊢ ( 𝜑 → ( 𝐿 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 220 | 2fveq3 | ⊢ ( 𝑥 = 𝑖 → ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) | |
| 221 | 220 | cbvdisjv | ⊢ ( Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ Disj 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 222 | 2 221 | sylib | ⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 223 | fz1ssnn | ⊢ ( 1 ... 𝑁 ) ⊆ ℕ | |
| 224 | 223 | a1i | ⊢ ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℕ ) |
| 225 | uzss | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 1 ) ) | |
| 226 | 43 225 | syl | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 1 ) ) |
| 227 | 226 41 | sseqtrrdi | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ℕ ) |
| 228 | 51 | ineq1d | ⊢ ( 𝜑 → ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 1 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 229 | uzdisj | ⊢ ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ | |
| 230 | 228 229 | eqtr3di | ⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ ) |
| 231 | disjiun | ⊢ ( ( Disj 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∧ ( ( 1 ... 𝑁 ) ⊆ ℕ ∧ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ℕ ∧ ( ( 1 ... 𝑁 ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ ) ) → ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ∅ ) | |
| 232 | 222 224 227 230 231 | syl13anc | ⊢ ( 𝜑 → ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ∅ ) |
| 233 | 219 232 | eqtrd | ⊢ ( 𝜑 → ( 𝐿 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ∅ ) |
| 234 | uneqdifeq | ⊢ ( ( 𝐿 ⊆ 𝐴 ∧ ( 𝐿 ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = ∅ ) → ( ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = 𝐴 ↔ ( 𝐴 ∖ 𝐿 ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | |
| 235 | 207 233 234 | sylancr | ⊢ ( 𝜑 → ( ( 𝐿 ∪ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) = 𝐴 ↔ ( 𝐴 ∖ 𝐿 ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 236 | 218 235 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ∖ 𝐿 ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 237 | 236 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐴 ∖ 𝐿 ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 238 | 237 | ineq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( 𝐴 ∖ 𝐿 ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 239 | incom | ⊢ ( ( 𝐴 ∖ 𝐿 ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ( 𝐴 ∖ 𝐿 ) ) | |
| 240 | 104 101 | eqtri | ⊢ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 241 | 238 239 240 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐴 ∖ 𝐿 ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 242 | 217 241 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) = ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 243 | 242 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) = ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 244 | 212 243 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∩ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) + ( vol* ‘ ( ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ∖ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) ) = ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 245 | 204 244 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) = ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ) |
| 246 | 202 142 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) ∈ ℝ ) |
| 247 | inss2 | ⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) | |
| 248 | 190 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ) |
| 249 | 200 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 250 | ovolsscl | ⊢ ( ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∧ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) | |
| 251 | 247 248 249 250 | mp3an2i | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 252 | 150 251 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 253 | 15 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑀 ) ) |
| 254 | 252 202 142 | absdifltd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑀 ) ↔ ( ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) < Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) < ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) + ( 𝐶 / 𝑀 ) ) ) ) ) |
| 255 | 253 254 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) < Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∧ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) < ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) + ( 𝐶 / 𝑀 ) ) ) ) |
| 256 | 255 | simpld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) < Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 257 | 246 252 256 | ltled | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) ≤ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 258 | 149 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) = ( vol* ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 259 | mblvol | ⊢ ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol → ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) | |
| 260 | 174 259 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 261 | 260 251 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 262 | 174 261 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) |
| 263 | 262 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ) |
| 264 | inss1 | ⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) | |
| 265 | 264 | rgenw | ⊢ ∀ 𝑖 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) |
| 266 | 222 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → Disj 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 267 | disjss2 | ⊢ ( ∀ 𝑖 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) → ( Disj 𝑖 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) → Disj 𝑖 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) | |
| 268 | 265 266 267 | mpsyl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → Disj 𝑖 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 269 | disjss1 | ⊢ ( ( 1 ... 𝑁 ) ⊆ ℕ → ( Disj 𝑖 ∈ ℕ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) → Disj 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) | |
| 270 | 223 268 269 | mpsyl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → Disj 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 271 | volfiniun | ⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ∈ ℝ ) ∧ Disj 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) → ( vol ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) | |
| 272 | 150 263 270 271 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 273 | mblvol | ⊢ ( ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ∈ dom vol → ( vol ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) | |
| 274 | 177 273 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = ( vol* ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 275 | 260 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 276 | 272 274 275 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ∪ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 277 | 258 276 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 278 | 257 277 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) ≤ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ) |
| 279 | 277 252 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ∈ ℝ ) |
| 280 | 202 142 279 | lesubaddd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) − ( 𝐶 / 𝑀 ) ) ≤ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) ↔ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( 𝐶 / 𝑀 ) ) ) ) |
| 281 | 278 280 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( 𝐶 / 𝑀 ) ) ) |
| 282 | 245 281 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ≤ ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( 𝐶 / 𝑀 ) ) ) |
| 283 | 134 142 279 | leadd2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ ( 𝐶 / 𝑀 ) ↔ ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ≤ ( ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐿 ) ) + ( 𝐶 / 𝑀 ) ) ) ) |
| 284 | 282 283 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ ( 𝐶 / 𝑀 ) ) |
| 285 | 127 134 142 284 | fsumle | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐶 / 𝑀 ) ) |
| 286 | 141 | recnd | ⊢ ( 𝜑 → ( 𝐶 / 𝑀 ) ∈ ℂ ) |
| 287 | fsumconst | ⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ( 𝐶 / 𝑀 ) ∈ ℂ ) → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐶 / 𝑀 ) = ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · ( 𝐶 / 𝑀 ) ) ) | |
| 288 | 127 286 287 | syl2anc | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐶 / 𝑀 ) = ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · ( 𝐶 / 𝑀 ) ) ) |
| 289 | nnnn0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) | |
| 290 | hashfz1 | ⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) | |
| 291 | 11 289 290 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 292 | 291 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 1 ... 𝑀 ) ) · ( 𝐶 / 𝑀 ) ) = ( 𝑀 · ( 𝐶 / 𝑀 ) ) ) |
| 293 | 119 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 294 | 11 | nncnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 295 | 11 | nnne0d | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 296 | 293 294 295 | divcan2d | ⊢ ( 𝜑 → ( 𝑀 · ( 𝐶 / 𝑀 ) ) = 𝐶 ) |
| 297 | 288 292 296 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( 𝐶 / 𝑀 ) = 𝐶 ) |
| 298 | 285 297 | breqtrd | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( vol* ‘ ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ 𝐶 ) |
| 299 | 117 135 119 140 298 | letrd | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ≤ 𝐶 ) |
| 300 | 117 119 39 299 | leadd2dd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ∪ 𝑗 ∈ ( 1 ... 𝑀 ) ∪ 𝑖 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ) |
| 301 | 36 118 120 126 300 | letrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ) |