This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function on a closed interval can be extended to a continuous function on the whole real line. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccncfext.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| icccncfext.2 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | ||
| icccncfext.3 | ⊢ 𝑌 = ∪ 𝐾 | ||
| icccncfext.4 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) | ||
| icccncfext.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| icccncfext.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| icccncfext.7 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| icccncfext.8 | ⊢ ( 𝜑 → 𝐾 ∈ Top ) | ||
| icccncfext.9 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐾 ) ) | ||
| Assertion | icccncfext | ⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ↾ ( 𝐴 [,] 𝐵 ) ) = 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccncfext.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | icccncfext.2 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 3 | icccncfext.3 | ⊢ 𝑌 = ∪ 𝐾 | |
| 4 | icccncfext.4 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) | |
| 5 | icccncfext.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 6 | icccncfext.6 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 7 | icccncfext.7 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 8 | icccncfext.8 | ⊢ ( 𝜑 → 𝐾 ∈ Top ) | |
| 9 | icccncfext.9 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐾 ) ) | |
| 10 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 11 | 2 10 | eqeltri | ⊢ 𝐽 ∈ ( TopOn ‘ ℝ ) |
| 12 | 5 6 | iccssred | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 13 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) | |
| 14 | 11 12 13 | sylancr | ⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 15 | 8 3 | jctir | ⊢ ( 𝜑 → ( 𝐾 ∈ Top ∧ 𝑌 = ∪ 𝐾 ) ) |
| 16 | istopon | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ↔ ( 𝐾 ∈ Top ∧ 𝑌 = ∪ 𝐾 ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 18 | cnf2 | ⊢ ( ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐾 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ 𝑌 ) | |
| 19 | 14 17 9 18 | syl3anc | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ 𝑌 ) |
| 20 | 19 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 21 | dffn3 | ⊢ ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) ↔ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ran 𝐹 ) | |
| 22 | 20 21 | sylib | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ran 𝐹 ) |
| 23 | 22 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 24 | fnfun | ⊢ ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) → Fun 𝐹 ) | |
| 25 | 20 24 | syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 26 | 5 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 27 | 6 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 28 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 29 | 26 27 7 28 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 30 | 20 | fndmd | ⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) |
| 31 | 30 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 32 | 29 31 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝐹 ) |
| 33 | fvelrn | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) | |
| 34 | 25 32 33 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
| 35 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 36 | 26 27 7 35 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 37 | 36 31 | eleqtrd | ⊢ ( 𝜑 → 𝐵 ∈ dom 𝐹 ) |
| 38 | fvelrn | ⊢ ( ( Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐵 ) ∈ ran 𝐹 ) | |
| 39 | 25 37 38 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ran 𝐹 ) |
| 40 | 34 39 | ifcld | ⊢ ( 𝜑 → if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ∈ ran 𝐹 ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ∈ ran 𝐹 ) |
| 42 | 23 41 | ifclda | ⊢ ( 𝜑 → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ∈ ran 𝐹 ) |
| 43 | 42 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ∈ ran 𝐹 ) |
| 44 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ ( 𝐴 [,] 𝐵 ) | |
| 45 | nfcv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) | |
| 46 | nfcv | ⊢ Ⅎ 𝑦 if ( 𝑥 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) | |
| 47 | 44 45 46 | nfif | ⊢ Ⅎ 𝑦 if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) |
| 48 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ ( 𝐴 [,] 𝐵 ) | |
| 49 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 50 | 1 49 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 51 | nfv | ⊢ Ⅎ 𝑥 𝑦 < 𝐴 | |
| 52 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 53 | 1 52 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐴 ) |
| 54 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 55 | 1 54 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝐵 ) |
| 56 | 51 53 55 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) |
| 57 | 48 50 56 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) |
| 58 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) | |
| 59 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 60 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 < 𝐴 ↔ 𝑦 < 𝐴 ) ) | |
| 61 | 60 | ifbid | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) = if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) |
| 62 | 58 59 61 | ifbieq12d | ⊢ ( 𝑥 = 𝑦 → if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 63 | 47 57 62 | cbvmpt | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑥 ) , if ( 𝑥 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 64 | 4 63 | eqtri | ⊢ 𝐺 = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 65 | 43 64 | fmptd | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ran 𝐹 ) |
| 66 | 65 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐺 : ℝ ⟶ ran 𝐹 ) |
| 67 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) → 𝜑 ) | |
| 68 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) → 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) | |
| 69 | 67 68 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) → ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ) |
| 70 | ssidd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ran 𝐹 ) | |
| 71 | 19 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑌 ) |
| 72 | cnrest2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝑌 ) → ( 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐾 ) ↔ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐾 ↾t ran 𝐹 ) ) ) ) | |
| 73 | 17 70 71 72 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn 𝐾 ) ↔ 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐾 ↾t ran 𝐹 ) ) ) ) |
| 74 | 9 73 | mpbid | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐾 ↾t ran 𝐹 ) ) ) |
| 75 | 74 | anim1i | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) → ( 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐾 ↾t ran 𝐹 ) ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ) |
| 76 | cnima | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( 𝐾 ↾t ran 𝐹 ) ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) → ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) | |
| 77 | 69 75 76 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) → ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 78 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 79 | 2 78 | eqeltri | ⊢ 𝐽 ∈ Top |
| 80 | 79 | a1i | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 81 | reex | ⊢ ℝ ∈ V | |
| 82 | 81 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 83 | 82 12 | ssexd | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ V ) |
| 84 | 80 83 | jca | ⊢ ( 𝜑 → ( 𝐽 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) ) |
| 85 | 67 84 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) → ( 𝐽 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) ) |
| 86 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ↔ ∃ 𝑤 ∈ 𝐽 ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 87 | 85 86 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) → ( ( ◡ 𝐹 “ 𝑢 ) ∈ ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ↔ ∃ 𝑤 ∈ 𝐽 ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 88 | 77 87 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) → ∃ 𝑤 ∈ 𝐽 ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 89 | 67 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝜑 ) |
| 90 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) → 𝑦 ∈ ℝ ) | |
| 91 | 90 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑦 ∈ ℝ ) |
| 92 | simp1r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 93 | 89 91 92 | jca31 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ) |
| 94 | simpll2 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑤 ∈ 𝐽 ) | |
| 95 | iooretop | ⊢ ( -∞ (,) 𝐴 ) ∈ ( topGen ‘ ran (,) ) | |
| 96 | 95 2 | eleqtrri | ⊢ ( -∞ (,) 𝐴 ) ∈ 𝐽 |
| 97 | iooretop | ⊢ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) | |
| 98 | 97 2 | eleqtrri | ⊢ ( 𝐵 (,) +∞ ) ∈ 𝐽 |
| 99 | unopn | ⊢ ( ( 𝐽 ∈ Top ∧ ( -∞ (,) 𝐴 ) ∈ 𝐽 ∧ ( 𝐵 (,) +∞ ) ∈ 𝐽 ) → ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 ) | |
| 100 | 79 96 98 99 | mp3an | ⊢ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 |
| 101 | unopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑤 ∈ 𝐽 ∧ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 ) → ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ∈ 𝐽 ) | |
| 102 | 79 100 101 | mp3an13 | ⊢ ( 𝑤 ∈ 𝐽 → ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ∈ 𝐽 ) |
| 103 | 94 102 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ∈ 𝐽 ) |
| 104 | simpl1l | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝜑 ∧ 𝑦 ∈ ℝ ) ) | |
| 105 | 104 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝜑 ∧ 𝑦 ∈ ℝ ) ) |
| 106 | simpl1r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 107 | 106 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) |
| 108 | simpll3 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 109 | difreicc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) = ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) | |
| 110 | 5 6 109 | syl2anc | ⊢ ( 𝜑 → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) = ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) |
| 111 | 110 | eqcomd | ⊢ ( 𝜑 → ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) = ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) |
| 112 | 111 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ↔ 𝑦 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 113 | 112 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ↔ ¬ 𝑦 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 114 | 113 | biimpa | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ¬ 𝑦 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) |
| 115 | eldif | ⊢ ( 𝑦 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) | |
| 116 | 114 115 | sylnib | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ¬ ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 117 | imnan | ⊢ ( ( 𝑦 ∈ ℝ → ¬ ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ¬ ( 𝑦 ∈ ℝ ∧ ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) | |
| 118 | 116 117 | sylibr | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( 𝑦 ∈ ℝ → ¬ ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 119 | 118 | imp | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ∧ 𝑦 ∈ ℝ ) → ¬ ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 120 | 119 | notnotrd | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 121 | 120 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 122 | 121 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 123 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → 𝜑 ) | |
| 124 | 12 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 125 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ 𝑌 ) |
| 126 | 125 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
| 127 | 19 29 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑌 ) |
| 128 | 127 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 < 𝐴 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑌 ) |
| 129 | 19 36 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ 𝑌 ) |
| 130 | 129 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑦 < 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑌 ) |
| 131 | 128 130 | ifclda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ∈ 𝑌 ) |
| 132 | 126 131 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ∈ 𝑌 ) |
| 133 | 64 | fvmpt2 | ⊢ ( ( 𝑦 ∈ ℝ ∧ if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ∈ 𝑌 ) → ( 𝐺 ‘ 𝑦 ) = if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 134 | 124 132 133 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) = if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 135 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 136 | 135 | iftrued | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 137 | 134 136 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 138 | 137 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 139 | 123 122 138 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 140 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 141 | 139 140 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) |
| 142 | 123 20 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 143 | elpreima | ⊢ ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) ) ) | |
| 144 | 142 143 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) ) ) |
| 145 | 122 141 144 | mpbir2and | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 146 | 145 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 147 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 148 | 146 147 | eleqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 149 | elin | ⊢ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) | |
| 150 | 148 149 | sylib | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 151 | 150 | simpld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → 𝑦 ∈ 𝑤 ) |
| 152 | 151 | ex | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ 𝑤 ) ) |
| 153 | 152 | orrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ∨ 𝑦 ∈ 𝑤 ) ) |
| 154 | 153 | orcomd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑦 ∈ 𝑤 ∨ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) |
| 155 | elun | ⊢ ( 𝑦 ∈ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ↔ ( 𝑦 ∈ 𝑤 ∨ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) | |
| 156 | 154 155 | sylibr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑦 ∈ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) |
| 157 | 105 107 108 156 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) |
| 158 | imaundi | ⊢ ( 𝐺 “ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) = ( ( 𝐺 “ 𝑤 ) ∪ ( 𝐺 “ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) | |
| 159 | 105 | simpld | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝜑 ) |
| 160 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℝ ) ∧ 𝑤 ∈ 𝐽 ) → 𝑤 ⊆ ℝ ) | |
| 161 | 11 94 160 | sylancr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑤 ⊆ ℝ ) |
| 162 | 159 161 108 | jca31 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 163 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 164 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) | |
| 165 | 4 | funmpt2 | ⊢ Fun 𝐺 |
| 166 | 165 | a1i | ⊢ ( 𝜑 → Fun 𝐺 ) |
| 167 | 166 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) → Fun 𝐺 ) |
| 168 | fvelima | ⊢ ( ( Fun 𝐺 ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) → ∃ 𝑧 ∈ 𝑤 ( 𝐺 ‘ 𝑧 ) = 𝑦 ) | |
| 169 | 167 168 | sylancom | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) → ∃ 𝑧 ∈ 𝑤 ( 𝐺 ‘ 𝑧 ) = 𝑦 ) |
| 170 | eqcom | ⊢ ( ( 𝐺 ‘ 𝑧 ) = 𝑦 ↔ 𝑦 = ( 𝐺 ‘ 𝑧 ) ) | |
| 171 | 170 | biimpi | ⊢ ( ( 𝐺 ‘ 𝑧 ) = 𝑦 → 𝑦 = ( 𝐺 ‘ 𝑧 ) ) |
| 172 | 171 | 3ad2ant3 | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → 𝑦 = ( 𝐺 ‘ 𝑧 ) ) |
| 173 | simp1ll | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ) | |
| 174 | simp1lr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) | |
| 175 | simp2 | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → 𝑧 ∈ 𝑤 ) | |
| 176 | simp-5l | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ) | |
| 177 | simp-5r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 178 | simplr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ 𝑤 ) | |
| 179 | 176 177 178 | jca31 | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ) |
| 180 | eleq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) | |
| 181 | 180 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 182 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 183 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 184 | 182 183 | eqeq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 185 | 181 184 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 186 | 185 137 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 187 | 186 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 188 | 187 | adantl3r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 189 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝜑 ) | |
| 190 | simp-4r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ⊆ ℝ ) | |
| 191 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ 𝑤 ) | |
| 192 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 193 | 191 192 | elind | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 194 | eqcom | ⊢ ( ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ◡ 𝐹 “ 𝑢 ) ) | |
| 195 | 194 | biimpi | ⊢ ( ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) → ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ◡ 𝐹 “ 𝑢 ) ) |
| 196 | 195 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ◡ 𝐹 “ 𝑢 ) ) |
| 197 | 193 196 | eleqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 198 | 197 | adantl3r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 199 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) | |
| 200 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 201 | elpreima | ⊢ ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) ) | |
| 202 | 200 201 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) ) |
| 203 | 199 202 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) ) |
| 204 | 203 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) |
| 205 | 189 190 198 204 | syl21anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) |
| 206 | 188 205 | eqeltrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 207 | 179 206 | sylancom | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 208 | simp-5l | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝜑 ) | |
| 209 | simp-4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 210 | 208 209 | jca | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ) |
| 211 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) | |
| 212 | simp-5r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑤 ⊆ ℝ ) | |
| 213 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ 𝑤 ) | |
| 214 | 212 213 | sseldd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ℝ ) |
| 215 | 210 211 214 | jca31 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ) |
| 216 | 64 | a1i | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
| 217 | breq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 < 𝐴 ↔ 𝑧 < 𝐴 ) ) | |
| 218 | 217 | ifbid | ⊢ ( 𝑦 = 𝑧 → if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) = if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) |
| 219 | 180 183 218 | ifbieq12d | ⊢ ( 𝑦 = 𝑧 → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 220 | 219 | adantl | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 = 𝑧 ) → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 221 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ℝ ) | |
| 222 | iffalse | ⊢ ( ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) | |
| 223 | 222 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) |
| 224 | simp-5r | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑧 < 𝐴 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 225 | simp-4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑧 < 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) | |
| 226 | 224 225 | ifclda | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ∈ 𝑢 ) |
| 227 | 223 226 | eqeltrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ∈ 𝑢 ) |
| 228 | 216 220 221 227 | fvmptd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 229 | 228 223 | eqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) |
| 230 | 229 226 | eqeltrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 231 | 215 230 | sylancom | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 232 | 231 | adantl4r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 233 | 207 232 | pm2.61dan | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑧 ∈ 𝑤 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 234 | 173 174 175 233 | syl21anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 235 | 172 234 | eqeltrd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) ∧ 𝑧 ∈ 𝑤 ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → 𝑦 ∈ 𝑢 ) |
| 236 | 235 | rexlimdv3a | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) → ( ∃ 𝑧 ∈ 𝑤 ( 𝐺 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ 𝑢 ) ) |
| 237 | 169 236 | mpd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ 𝑤 ) ) → 𝑦 ∈ 𝑢 ) |
| 238 | 237 | ex | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑦 ∈ ( 𝐺 “ 𝑤 ) → 𝑦 ∈ 𝑢 ) ) |
| 239 | 238 | alrimiv | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ∀ 𝑦 ( 𝑦 ∈ ( 𝐺 “ 𝑤 ) → 𝑦 ∈ 𝑢 ) ) |
| 240 | 162 163 164 239 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ∀ 𝑦 ( 𝑦 ∈ ( 𝐺 “ 𝑤 ) → 𝑦 ∈ 𝑢 ) ) |
| 241 | df-ss | ⊢ ( ( 𝐺 “ 𝑤 ) ⊆ 𝑢 ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝐺 “ 𝑤 ) → 𝑦 ∈ 𝑢 ) ) | |
| 242 | 240 241 | sylibr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ 𝑤 ) ⊆ 𝑢 ) |
| 243 | imaundi | ⊢ ( 𝐺 “ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) = ( ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ∪ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) | |
| 244 | 165 | a1i | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) → Fun 𝐺 ) |
| 245 | fvelima | ⊢ ( ( Fun 𝐺 ∧ 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) → ∃ 𝑧 ∈ ( -∞ (,) 𝐴 ) ( 𝐺 ‘ 𝑧 ) = 𝑡 ) | |
| 246 | 244 245 | sylancom | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) → ∃ 𝑧 ∈ ( -∞ (,) 𝐴 ) ( 𝐺 ‘ 𝑧 ) = 𝑡 ) |
| 247 | simp1l | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → 𝜑 ) | |
| 248 | simp2 | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → 𝑧 ∈ ( -∞ (,) 𝐴 ) ) | |
| 249 | simp3 | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → ( 𝐺 ‘ 𝑧 ) = 𝑡 ) | |
| 250 | 64 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝐺 = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
| 251 | 219 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) ∧ 𝑦 = 𝑧 ) → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 252 | elioore | ⊢ ( 𝑧 ∈ ( -∞ (,) 𝐴 ) → 𝑧 ∈ ℝ ) | |
| 253 | 252 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ∈ ℝ ) |
| 254 | elioo3g | ⊢ ( 𝑧 ∈ ( -∞ (,) 𝐴 ) ↔ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( -∞ < 𝑧 ∧ 𝑧 < 𝐴 ) ) ) | |
| 255 | 254 | biimpi | ⊢ ( 𝑧 ∈ ( -∞ (,) 𝐴 ) → ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( -∞ < 𝑧 ∧ 𝑧 < 𝐴 ) ) ) |
| 256 | 255 | simprrd | ⊢ ( 𝑧 ∈ ( -∞ (,) 𝐴 ) → 𝑧 < 𝐴 ) |
| 257 | 256 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 < 𝐴 ) |
| 258 | ltnle | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑧 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑧 ) ) | |
| 259 | 252 5 258 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝑧 < 𝐴 ↔ ¬ 𝐴 ≤ 𝑧 ) ) |
| 260 | 257 259 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ¬ 𝐴 ≤ 𝑧 ) |
| 261 | 260 | intn3an2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ¬ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) |
| 262 | 5 6 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 263 | 262 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 264 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) ) | |
| 265 | 263 264 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) ) |
| 266 | 261 265 | mtbird | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 267 | 266 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) |
| 268 | 256 | iftrued | ⊢ ( 𝑧 ∈ ( -∞ (,) 𝐴 ) → if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 269 | 268 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 270 | 267 269 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 271 | 127 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑌 ) |
| 272 | 270 271 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ∈ 𝑌 ) |
| 273 | 250 251 253 272 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 274 | 273 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 275 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → ( 𝐺 ‘ 𝑧 ) = 𝑡 ) | |
| 276 | 270 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
| 277 | 274 275 276 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → 𝑡 = ( 𝐹 ‘ 𝐴 ) ) |
| 278 | 247 248 249 277 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → 𝑡 = ( 𝐹 ‘ 𝐴 ) ) |
| 279 | 278 | rexlimdv3a | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) → ( ∃ 𝑧 ∈ ( -∞ (,) 𝐴 ) ( 𝐺 ‘ 𝑧 ) = 𝑡 → 𝑡 = ( 𝐹 ‘ 𝐴 ) ) ) |
| 280 | 246 279 | mpd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) → 𝑡 = ( 𝐹 ‘ 𝐴 ) ) |
| 281 | velsn | ⊢ ( 𝑡 ∈ { ( 𝐹 ‘ 𝐴 ) } ↔ 𝑡 = ( 𝐹 ‘ 𝐴 ) ) | |
| 282 | 280 281 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) → 𝑡 ∈ { ( 𝐹 ‘ 𝐴 ) } ) |
| 283 | 282 | ex | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) → 𝑡 ∈ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 284 | 283 | ssrdv | ⊢ ( 𝜑 → ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ⊆ { ( 𝐹 ‘ 𝐴 ) } ) |
| 285 | 284 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ⊆ { ( 𝐹 ‘ 𝐴 ) } ) |
| 286 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 287 | 286 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑢 ) |
| 288 | 285 287 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ⊆ 𝑢 ) |
| 289 | 288 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ⊆ 𝑢 ) |
| 290 | fvelima | ⊢ ( ( Fun 𝐺 ∧ 𝑡 ∈ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) → ∃ 𝑧 ∈ ( 𝐵 (,) +∞ ) ( 𝐺 ‘ 𝑧 ) = 𝑡 ) | |
| 291 | 166 290 | sylan | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) → ∃ 𝑧 ∈ ( 𝐵 (,) +∞ ) ( 𝐺 ‘ 𝑧 ) = 𝑡 ) |
| 292 | simp1l | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → 𝜑 ) | |
| 293 | simp2 | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → 𝑧 ∈ ( 𝐵 (,) +∞ ) ) | |
| 294 | simp3 | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → ( 𝐺 ‘ 𝑧 ) = 𝑡 ) | |
| 295 | 64 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → 𝐺 = ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
| 296 | 219 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) ∧ 𝑦 = 𝑧 ) → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 297 | elioore | ⊢ ( 𝑧 ∈ ( 𝐵 (,) +∞ ) → 𝑧 ∈ ℝ ) | |
| 298 | 297 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → 𝑧 ∈ ℝ ) |
| 299 | 19 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) |
| 300 | 299 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) |
| 301 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → 𝐴 ∈ ℝ ) |
| 302 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → 𝐵 ∈ ℝ ) |
| 303 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → 𝐴 ≤ 𝐵 ) |
| 304 | elioo3g | ⊢ ( 𝑧 ∈ ( 𝐵 (,) +∞ ) ↔ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( 𝐵 < 𝑧 ∧ 𝑧 < +∞ ) ) ) | |
| 305 | 304 | biimpi | ⊢ ( 𝑧 ∈ ( 𝐵 (,) +∞ ) → ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( 𝐵 < 𝑧 ∧ 𝑧 < +∞ ) ) ) |
| 306 | 305 | simprld | ⊢ ( 𝑧 ∈ ( 𝐵 (,) +∞ ) → 𝐵 < 𝑧 ) |
| 307 | 306 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → 𝐵 < 𝑧 ) |
| 308 | 301 302 298 303 307 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → 𝐴 < 𝑧 ) |
| 309 | 301 298 308 | ltnsymd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → ¬ 𝑧 < 𝐴 ) |
| 310 | 309 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 311 | 129 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑌 ) |
| 312 | 310 311 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ∈ 𝑌 ) |
| 313 | 312 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) ∧ ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ∈ 𝑌 ) |
| 314 | 300 313 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ∈ 𝑌 ) |
| 315 | 295 296 298 314 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 316 | 315 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → ( 𝐺 ‘ 𝑧 ) = if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 317 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → ( 𝐺 ‘ 𝑧 ) = 𝑡 ) | |
| 318 | 302 298 | ltnled | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐵 < 𝑧 ↔ ¬ 𝑧 ≤ 𝐵 ) ) |
| 319 | 307 318 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → ¬ 𝑧 ≤ 𝐵 ) |
| 320 | 319 | intn3an3d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → ¬ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) |
| 321 | 262 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 322 | 321 264 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) ) |
| 323 | 320 322 | mtbird | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → ¬ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 324 | 323 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) |
| 325 | 324 310 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 326 | 325 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → if ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑧 ) , if ( 𝑧 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 327 | 316 317 326 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → 𝑡 = ( 𝐹 ‘ 𝐵 ) ) |
| 328 | 292 293 294 327 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) ∧ 𝑧 ∈ ( 𝐵 (,) +∞ ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑡 ) → 𝑡 = ( 𝐹 ‘ 𝐵 ) ) |
| 329 | 328 | rexlimdv3a | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) → ( ∃ 𝑧 ∈ ( 𝐵 (,) +∞ ) ( 𝐺 ‘ 𝑧 ) = 𝑡 → 𝑡 = ( 𝐹 ‘ 𝐵 ) ) ) |
| 330 | 291 329 | mpd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) → 𝑡 = ( 𝐹 ‘ 𝐵 ) ) |
| 331 | velsn | ⊢ ( 𝑡 ∈ { ( 𝐹 ‘ 𝐵 ) } ↔ 𝑡 = ( 𝐹 ‘ 𝐵 ) ) | |
| 332 | 330 331 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) → 𝑡 ∈ { ( 𝐹 ‘ 𝐵 ) } ) |
| 333 | 332 | ex | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) → 𝑡 ∈ { ( 𝐹 ‘ 𝐵 ) } ) ) |
| 334 | 333 | ssrdv | ⊢ ( 𝜑 → ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ⊆ { ( 𝐹 ‘ 𝐵 ) } ) |
| 335 | 334 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ⊆ { ( 𝐹 ‘ 𝐵 ) } ) |
| 336 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) | |
| 337 | 336 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → { ( 𝐹 ‘ 𝐵 ) } ⊆ 𝑢 ) |
| 338 | 335 337 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ⊆ 𝑢 ) |
| 339 | 338 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ⊆ 𝑢 ) |
| 340 | 289 339 | unssd | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ∪ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) ⊆ 𝑢 ) |
| 341 | 243 340 | eqsstrid | ⊢ ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ 𝑢 ) |
| 342 | 159 163 164 341 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ 𝑢 ) |
| 343 | 242 342 | unssd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝐺 “ 𝑤 ) ∪ ( 𝐺 “ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) ⊆ 𝑢 ) |
| 344 | 158 343 | eqsstrid | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) ⊆ 𝑢 ) |
| 345 | eleq2 | ⊢ ( 𝑣 = ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) ) | |
| 346 | imaeq2 | ⊢ ( 𝑣 = ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( 𝐺 “ 𝑣 ) = ( 𝐺 “ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) ) | |
| 347 | 346 | sseq1d | ⊢ ( 𝑣 = ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ↔ ( 𝐺 “ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) ⊆ 𝑢 ) ) |
| 348 | 345 347 | anbi12d | ⊢ ( 𝑣 = ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) → ( ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝑦 ∈ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ∧ ( 𝐺 “ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) ⊆ 𝑢 ) ) ) |
| 349 | 348 | rspcev | ⊢ ( ( ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ∈ 𝐽 ∧ ( 𝑦 ∈ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ∧ ( 𝐺 “ ( 𝑤 ∪ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 350 | 103 157 344 349 | syl12anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 351 | 79 | a1i | ⊢ ( 𝑤 ∈ 𝐽 → 𝐽 ∈ Top ) |
| 352 | iooretop | ⊢ ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) | |
| 353 | 352 2 | eleqtrri | ⊢ ( -∞ (,) 𝐵 ) ∈ 𝐽 |
| 354 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑤 ∈ 𝐽 ∧ ( -∞ (,) 𝐵 ) ∈ 𝐽 ) → ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∈ 𝐽 ) | |
| 355 | 79 353 354 | mp3an13 | ⊢ ( 𝑤 ∈ 𝐽 → ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∈ 𝐽 ) |
| 356 | 96 | a1i | ⊢ ( 𝑤 ∈ 𝐽 → ( -∞ (,) 𝐴 ) ∈ 𝐽 ) |
| 357 | unopn | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∈ 𝐽 ∧ ( -∞ (,) 𝐴 ) ∈ 𝐽 ) → ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ∈ 𝐽 ) | |
| 358 | 351 355 356 357 | syl3anc | ⊢ ( 𝑤 ∈ 𝐽 → ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ∈ 𝐽 ) |
| 359 | 358 | 3ad2ant2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ∈ 𝐽 ) |
| 360 | 359 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ∈ 𝐽 ) |
| 361 | simpll1 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ) | |
| 362 | simpll3 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 363 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) | |
| 364 | simpll | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 365 | 262 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 366 | eqimss | ⊢ ( ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) = ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) | |
| 367 | 109 366 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) |
| 368 | difcom | ⊢ ( ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ↔ ( ℝ ∖ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 369 | 367 368 | sylib | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 370 | 365 369 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ℝ ∖ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 371 | 370 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ( ℝ ∖ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 372 | simp-4r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → 𝑦 ∈ ℝ ) | |
| 373 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) | |
| 374 | elioore | ⊢ ( 𝑦 ∈ ( 𝐵 (,) +∞ ) → 𝑦 ∈ ℝ ) | |
| 375 | 374 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ ℝ ) |
| 376 | elioo3g | ⊢ ( 𝑦 ∈ ( 𝐵 (,) +∞ ) ↔ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) ) | |
| 377 | 376 | biimpi | ⊢ ( 𝑦 ∈ ( 𝐵 (,) +∞ ) → ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 378 | 377 | simprld | ⊢ ( 𝑦 ∈ ( 𝐵 (,) +∞ ) → 𝐵 < 𝑦 ) |
| 379 | 378 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝐵 < 𝑦 ) |
| 380 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝐵 ∈ ℝ ) |
| 381 | 380 375 | ltnled | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐵 < 𝑦 ↔ ¬ 𝑦 ≤ 𝐵 ) ) |
| 382 | 379 381 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ¬ 𝑦 ≤ 𝐵 ) |
| 383 | 382 | intn3an3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ¬ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
| 384 | 262 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 385 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) | |
| 386 | 384 385 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 387 | 383 386 | mtbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ¬ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 388 | 387 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) |
| 389 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝐴 ∈ ℝ ) |
| 390 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝐴 ≤ 𝐵 ) |
| 391 | 389 380 375 390 379 | lelttrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝐴 < 𝑦 ) |
| 392 | 389 375 391 | ltnsymd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ¬ 𝑦 < 𝐴 ) |
| 393 | 392 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 394 | 388 393 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 395 | 129 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑌 ) |
| 396 | 394 395 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ∈ 𝑌 ) |
| 397 | 375 396 133 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐺 ‘ 𝑦 ) = if ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) , ( 𝐹 ‘ 𝑦 ) , if ( 𝑦 < 𝐴 , ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 398 | 397 394 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 399 | 398 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐹 ‘ 𝐵 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 400 | 399 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐹 ‘ 𝐵 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 401 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 402 | 400 401 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) |
| 403 | 402 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) |
| 404 | 403 | stoic1a | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) |
| 405 | 404 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) |
| 406 | ioran | ⊢ ( ¬ ( 𝑦 ∈ ( -∞ (,) 𝐴 ) ∨ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) ↔ ( ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) ) | |
| 407 | 373 405 406 | sylanbrc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ¬ ( 𝑦 ∈ ( -∞ (,) 𝐴 ) ∨ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) ) |
| 408 | elun | ⊢ ( 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑦 ∈ ( -∞ (,) 𝐴 ) ∨ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) ) | |
| 409 | 407 408 | sylnibr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ¬ 𝑦 ∈ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) |
| 410 | 372 409 | eldifd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → 𝑦 ∈ ( ℝ ∖ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) ) |
| 411 | 371 410 | sseldd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 412 | 411 | adantllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 413 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝜑 ) | |
| 414 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 415 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 416 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 417 | 138 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 418 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 419 | 417 418 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) |
| 420 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 421 | 420 143 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) ) ) |
| 422 | 416 419 421 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 423 | 413 414 415 422 | syl21anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 424 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 425 | 423 424 | eleqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 426 | elinel1 | ⊢ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ 𝑤 ) | |
| 427 | 425 426 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ 𝑤 ) |
| 428 | 364 412 427 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → 𝑦 ∈ 𝑤 ) |
| 429 | simp-4l | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝜑 ∧ 𝑦 ∈ ℝ ) ) | |
| 430 | simp-4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 431 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) | |
| 432 | simpl | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝜑 ) | |
| 433 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) | |
| 434 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 435 | 433 434 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 436 | 432 435 137 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 437 | 433 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 438 | 436 437 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 439 | 438 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝑦 = 𝐵 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 440 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → 𝜑 ) | |
| 441 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐵 ∈ ℝ* ) |
| 442 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 443 | 442 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → +∞ ∈ ℝ* ) |
| 444 | rexr | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) | |
| 445 | 444 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ* ) |
| 446 | 441 443 445 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 447 | 446 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 448 | mnflt | ⊢ ( 𝑦 ∈ ℝ → -∞ < 𝑦 ) | |
| 449 | 448 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → -∞ < 𝑦 ) |
| 450 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 451 | 450 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → -∞ ∈ ℝ* ) |
| 452 | 451 441 445 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 453 | elioo3g | ⊢ ( 𝑦 ∈ ( -∞ (,) 𝐵 ) ↔ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( -∞ < 𝑦 ∧ 𝑦 < 𝐵 ) ) ) | |
| 454 | 453 | notbii | ⊢ ( ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ↔ ¬ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( -∞ < 𝑦 ∧ 𝑦 < 𝐵 ) ) ) |
| 455 | 454 | biimpi | ⊢ ( ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) → ¬ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( -∞ < 𝑦 ∧ 𝑦 < 𝐵 ) ) ) |
| 456 | 455 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → ¬ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( -∞ < 𝑦 ∧ 𝑦 < 𝐵 ) ) ) |
| 457 | nan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → ¬ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( -∞ < 𝑦 ∧ 𝑦 < 𝐵 ) ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ¬ ( -∞ < 𝑦 ∧ 𝑦 < 𝐵 ) ) ) | |
| 458 | 456 457 | mpbi | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ¬ ( -∞ < 𝑦 ∧ 𝑦 < 𝐵 ) ) |
| 459 | 452 458 | mpidan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → ¬ ( -∞ < 𝑦 ∧ 𝑦 < 𝐵 ) ) |
| 460 | nan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → ¬ ( -∞ < 𝑦 ∧ 𝑦 < 𝐵 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ -∞ < 𝑦 ) → ¬ 𝑦 < 𝐵 ) ) | |
| 461 | 459 460 | mpbi | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ -∞ < 𝑦 ) → ¬ 𝑦 < 𝐵 ) |
| 462 | 449 461 | mpdan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → ¬ 𝑦 < 𝐵 ) |
| 463 | 462 | anim1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → ( ¬ 𝑦 < 𝐵 ∧ ¬ 𝑦 = 𝐵 ) ) |
| 464 | pm4.56 | ⊢ ( ( ¬ 𝑦 < 𝐵 ∧ ¬ 𝑦 = 𝐵 ) ↔ ¬ ( 𝑦 < 𝐵 ∨ 𝑦 = 𝐵 ) ) | |
| 465 | 463 464 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → ¬ ( 𝑦 < 𝐵 ∨ 𝑦 = 𝐵 ) ) |
| 466 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 467 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
| 468 | 466 467 | jca | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 469 | 468 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → ( 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 470 | leloe | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ≤ 𝐵 ↔ ( 𝑦 < 𝐵 ∨ 𝑦 = 𝐵 ) ) ) | |
| 471 | 469 470 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → ( 𝑦 ≤ 𝐵 ↔ ( 𝑦 < 𝐵 ∨ 𝑦 = 𝐵 ) ) ) |
| 472 | 465 471 | mtbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → ¬ 𝑦 ≤ 𝐵 ) |
| 473 | 6 | anim1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) |
| 474 | 473 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → ( 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) |
| 475 | ltnle | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐵 < 𝑦 ↔ ¬ 𝑦 ≤ 𝐵 ) ) | |
| 476 | 474 475 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → ( 𝐵 < 𝑦 ↔ ¬ 𝑦 ≤ 𝐵 ) ) |
| 477 | 472 476 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → 𝐵 < 𝑦 ) |
| 478 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → 𝑦 ∈ ℝ ) | |
| 479 | 478 | ltpnfd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → 𝑦 < +∞ ) |
| 480 | 477 479 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) |
| 481 | 447 480 376 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → 𝑦 ∈ ( 𝐵 (,) +∞ ) ) |
| 482 | 440 481 398 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑦 = 𝐵 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 483 | 439 482 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 484 | 483 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝐹 ‘ 𝐵 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 485 | 484 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝐹 ‘ 𝐵 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 486 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 487 | 485 486 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) |
| 488 | 487 | stoic1a | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ¬ ¬ 𝑦 ∈ ( -∞ (,) 𝐵 ) ) |
| 489 | 488 | notnotrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( -∞ (,) 𝐵 ) ) |
| 490 | 429 430 431 489 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → 𝑦 ∈ ( -∞ (,) 𝐵 ) ) |
| 491 | 428 490 | elind | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → 𝑦 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) |
| 492 | 491 | ex | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ¬ 𝑦 ∈ ( -∞ (,) 𝐴 ) → 𝑦 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ) |
| 493 | 492 | orrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑦 ∈ ( -∞ (,) 𝐴 ) ∨ 𝑦 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ) |
| 494 | 493 | orcomd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑦 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∨ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) ) |
| 495 | elun | ⊢ ( 𝑦 ∈ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ↔ ( 𝑦 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∨ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) ) | |
| 496 | 494 495 | sylibr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) |
| 497 | 361 362 363 496 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) |
| 498 | 104 | simpld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → 𝜑 ) |
| 499 | 498 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝜑 ) |
| 500 | simpll2 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑤 ∈ 𝐽 ) | |
| 501 | 11 500 160 | sylancr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑤 ⊆ ℝ ) |
| 502 | 499 501 | jca | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ) |
| 503 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 504 | 65 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 505 | 504 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → 𝐺 Fn ℝ ) |
| 506 | ssinss1 | ⊢ ( 𝑤 ⊆ ℝ → ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ⊆ ℝ ) | |
| 507 | 506 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ⊆ ℝ ) |
| 508 | ioossre | ⊢ ( -∞ (,) 𝐴 ) ⊆ ℝ | |
| 509 | 508 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( -∞ (,) 𝐴 ) ⊆ ℝ ) |
| 510 | unima | ⊢ ( ( 𝐺 Fn ℝ ∧ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ⊆ ℝ ∧ ( -∞ (,) 𝐴 ) ⊆ ℝ ) → ( 𝐺 “ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) = ( ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∪ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) ) | |
| 511 | 505 507 509 510 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝐺 “ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) = ( ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∪ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) ) |
| 512 | 165 | a1i | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ) → Fun 𝐺 ) |
| 513 | fvelima | ⊢ ( ( Fun 𝐺 ∧ 𝑦 ∈ ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ) → ∃ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ( 𝐺 ‘ 𝑧 ) = 𝑦 ) | |
| 514 | 512 513 | sylancom | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ) → ∃ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ( 𝐺 ‘ 𝑧 ) = 𝑦 ) |
| 515 | 171 | 3ad2ant3 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → 𝑦 = ( 𝐺 ‘ 𝑧 ) ) |
| 516 | simp-5l | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝜑 ) | |
| 517 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 518 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ∈ ( -∞ (,) 𝐴 ) ) | |
| 519 | 273 267 269 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 520 | 519 | 3adant2 | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 521 | simp2 | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 522 | 520 521 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 523 | 516 517 518 522 | syl3anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 524 | simplll | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 525 | simp-5l | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝜑 ) | |
| 526 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) | |
| 527 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) | |
| 528 | elinel1 | ⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) → 𝑧 ∈ 𝑤 ) | |
| 529 | 528 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ∈ 𝑤 ) |
| 530 | elinel2 | ⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) → 𝑧 ∈ ( -∞ (,) 𝐵 ) ) | |
| 531 | elioore | ⊢ ( 𝑧 ∈ ( -∞ (,) 𝐵 ) → 𝑧 ∈ ℝ ) | |
| 532 | 530 531 | syl | ⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) → 𝑧 ∈ ℝ ) |
| 533 | 532 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ∈ ℝ ) |
| 534 | 26 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝐴 ∈ ℝ* ) |
| 535 | 533 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ∈ ℝ* ) |
| 536 | mnflt | ⊢ ( 𝑧 ∈ ℝ → -∞ < 𝑧 ) | |
| 537 | 533 536 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → -∞ < 𝑧 ) |
| 538 | 450 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → -∞ ∈ ℝ* ) |
| 539 | 538 534 535 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) |
| 540 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) | |
| 541 | 540 254 | sylnib | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ¬ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( -∞ < 𝑧 ∧ 𝑧 < 𝐴 ) ) ) |
| 542 | nan | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ¬ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( -∞ < 𝑧 ∧ 𝑧 < 𝐴 ) ) ) ↔ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) ∧ ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) → ¬ ( -∞ < 𝑧 ∧ 𝑧 < 𝐴 ) ) ) | |
| 543 | 541 542 | mpbi | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) ∧ ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) → ¬ ( -∞ < 𝑧 ∧ 𝑧 < 𝐴 ) ) |
| 544 | 539 543 | mpdan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ¬ ( -∞ < 𝑧 ∧ 𝑧 < 𝐴 ) ) |
| 545 | nan | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ¬ ( -∞ < 𝑧 ∧ 𝑧 < 𝐴 ) ) ↔ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) ∧ -∞ < 𝑧 ) → ¬ 𝑧 < 𝐴 ) ) | |
| 546 | 544 545 | mpbi | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) ∧ -∞ < 𝑧 ) → ¬ 𝑧 < 𝐴 ) |
| 547 | 537 546 | mpdan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ¬ 𝑧 < 𝐴 ) |
| 548 | 534 535 547 | xrnltled | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝐴 ≤ 𝑧 ) |
| 549 | simp1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝜑 ) | |
| 550 | 530 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ∈ ( -∞ (,) 𝐵 ) ) |
| 551 | 531 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐵 ) ) → 𝑧 ∈ ℝ ) |
| 552 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 553 | elioo3g | ⊢ ( 𝑧 ∈ ( -∞ (,) 𝐵 ) ↔ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( -∞ < 𝑧 ∧ 𝑧 < 𝐵 ) ) ) | |
| 554 | 553 | biimpi | ⊢ ( 𝑧 ∈ ( -∞ (,) 𝐵 ) → ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( -∞ < 𝑧 ∧ 𝑧 < 𝐵 ) ) ) |
| 555 | 554 | simprrd | ⊢ ( 𝑧 ∈ ( -∞ (,) 𝐵 ) → 𝑧 < 𝐵 ) |
| 556 | 555 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐵 ) ) → 𝑧 < 𝐵 ) |
| 557 | 551 552 556 | ltled | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐵 ) ) → 𝑧 ≤ 𝐵 ) |
| 558 | 549 550 557 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ≤ 𝐵 ) |
| 559 | 262 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 560 | 559 264 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵 ) ) ) |
| 561 | 533 548 558 560 | mpbir3and | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 562 | 529 561 | elind | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 563 | 525 526 527 562 | syl3anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 564 | elinel2 | ⊢ ( 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 565 | 564 | anim2i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 566 | 565 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 567 | 566 186 | syl | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 568 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 569 | simpr | ⊢ ( ( ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 570 | 195 | adantr | ⊢ ( ( ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ◡ 𝐹 “ 𝑢 ) ) |
| 571 | 569 570 | eleqtrd | ⊢ ( ( ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 572 | 571 | adantll | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 573 | 201 | simplbda | ⊢ ( ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑢 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) |
| 574 | 568 572 573 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑢 ) |
| 575 | 567 574 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 576 | 575 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 577 | 524 563 576 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∧ ¬ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 578 | 523 577 | pm2.61dan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 579 | 578 | 3adant3 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑢 ) |
| 580 | 515 579 | eqeltrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → 𝑦 ∈ 𝑢 ) |
| 581 | 580 | 3adant1r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ) ∧ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → 𝑦 ∈ 𝑢 ) |
| 582 | 581 | rexlimdv3a | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ( 𝐺 ‘ 𝑧 ) = 𝑦 → 𝑦 ∈ 𝑢 ) ) |
| 583 | 514 582 | mpd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ) → 𝑦 ∈ 𝑢 ) |
| 584 | 583 | ex | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝑦 ∈ ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) → 𝑦 ∈ 𝑢 ) ) |
| 585 | 584 | ssrdv | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ⊆ 𝑢 ) |
| 586 | 288 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ⊆ 𝑢 ) |
| 587 | 585 586 | unssd | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( ( 𝐺 “ ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ) ∪ ( 𝐺 “ ( -∞ (,) 𝐴 ) ) ) ⊆ 𝑢 ) |
| 588 | 511 587 | eqsstrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑤 ⊆ ℝ ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝐺 “ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) ⊆ 𝑢 ) |
| 589 | 502 362 503 588 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) ⊆ 𝑢 ) |
| 590 | eleq2 | ⊢ ( 𝑣 = ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) ) | |
| 591 | imaeq2 | ⊢ ( 𝑣 = ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) → ( 𝐺 “ 𝑣 ) = ( 𝐺 “ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) ) | |
| 592 | 591 | sseq1d | ⊢ ( 𝑣 = ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) → ( ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ↔ ( 𝐺 “ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) ⊆ 𝑢 ) ) |
| 593 | 590 592 | anbi12d | ⊢ ( 𝑣 = ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) → ( ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝑦 ∈ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ∧ ( 𝐺 “ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) ⊆ 𝑢 ) ) ) |
| 594 | 593 | rspcev | ⊢ ( ( ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ∈ 𝐽 ∧ ( 𝑦 ∈ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ∧ ( 𝐺 “ ( ( 𝑤 ∩ ( -∞ (,) 𝐵 ) ) ∪ ( -∞ (,) 𝐴 ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 595 | 360 497 589 594 | syl12anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 596 | 350 595 | pm2.61dan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 597 | simpll2 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑤 ∈ 𝐽 ) | |
| 598 | iooretop | ⊢ ( 𝐴 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) | |
| 599 | 598 2 | eleqtrri | ⊢ ( 𝐴 (,) +∞ ) ∈ 𝐽 |
| 600 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑤 ∈ 𝐽 ∧ ( 𝐴 (,) +∞ ) ∈ 𝐽 ) → ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∈ 𝐽 ) | |
| 601 | 79 599 600 | mp3an13 | ⊢ ( 𝑤 ∈ 𝐽 → ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∈ 𝐽 ) |
| 602 | 98 | a1i | ⊢ ( 𝑤 ∈ 𝐽 → ( 𝐵 (,) +∞ ) ∈ 𝐽 ) |
| 603 | unopn | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∈ 𝐽 ∧ ( 𝐵 (,) +∞ ) ∈ 𝐽 ) → ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 ) | |
| 604 | 351 601 602 603 | syl3anc | ⊢ ( 𝑤 ∈ 𝐽 → ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 ) |
| 605 | 597 604 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 ) |
| 606 | simplll | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ) | |
| 607 | 606 | simpld | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝜑 ∧ 𝑦 ∈ ℝ ) ) |
| 608 | 607 | simpld | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝜑 ) |
| 609 | simp-4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 610 | simp-5r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ ℝ ) | |
| 611 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 612 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 𝐴 ) → 𝜑 ) | |
| 613 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
| 614 | 451 613 445 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 615 | 614 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 𝐴 ) → ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 616 | 448 | anim1i | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑦 < 𝐴 ) → ( -∞ < 𝑦 ∧ 𝑦 < 𝐴 ) ) |
| 617 | 616 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 𝐴 ) → ( -∞ < 𝑦 ∧ 𝑦 < 𝐴 ) ) |
| 618 | elioo3g | ⊢ ( 𝑦 ∈ ( -∞ (,) 𝐴 ) ↔ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( -∞ < 𝑦 ∧ 𝑦 < 𝐴 ) ) ) | |
| 619 | 615 617 618 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 𝐴 ) → 𝑦 ∈ ( -∞ (,) 𝐴 ) ) |
| 620 | eleq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ ( -∞ (,) 𝐴 ) ↔ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) ) | |
| 621 | 620 | anbi2d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) ↔ ( 𝜑 ∧ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) ) ) |
| 622 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 623 | 622 | eqeq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐺 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 624 | 621 623 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( ( 𝜑 ∧ 𝑧 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 625 | 624 519 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( -∞ (,) 𝐴 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 626 | 612 619 625 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 627 | 626 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < 𝐴 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 628 | 627 | ad4ant14 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑦 < 𝐴 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 629 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑦 < 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 630 | 628 629 | eqeltrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑦 < 𝐴 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) |
| 631 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ 𝑦 < 𝐴 ) → ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 632 | 630 631 | pm2.65da | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ¬ 𝑦 < 𝐴 ) |
| 633 | 5 | anim1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) |
| 634 | 633 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) |
| 635 | lenlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 ≤ 𝑦 ↔ ¬ 𝑦 < 𝐴 ) ) | |
| 636 | 634 635 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ( 𝐴 ≤ 𝑦 ↔ ¬ 𝑦 < 𝐴 ) ) |
| 637 | 632 636 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → 𝐴 ≤ 𝑦 ) |
| 638 | 606 611 637 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝐴 ≤ 𝑦 ) |
| 639 | ltpnf | ⊢ ( 𝑦 ∈ ℝ → 𝑦 < +∞ ) | |
| 640 | 639 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 < +∞ ) |
| 641 | 446 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 642 | 376 | notbii | ⊢ ( ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ↔ ¬ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 643 | 642 | biimpi | ⊢ ( ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) → ¬ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 644 | 643 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ¬ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 645 | imnan | ⊢ ( ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ¬ ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) ↔ ¬ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) ) | |
| 646 | 644 645 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ¬ ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 647 | 641 646 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ¬ ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) |
| 648 | ancom | ⊢ ( ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ↔ ( 𝑦 < +∞ ∧ 𝐵 < 𝑦 ) ) | |
| 649 | 647 648 | sylnib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ¬ ( 𝑦 < +∞ ∧ 𝐵 < 𝑦 ) ) |
| 650 | imnan | ⊢ ( ( 𝑦 < +∞ → ¬ 𝐵 < 𝑦 ) ↔ ¬ ( 𝑦 < +∞ ∧ 𝐵 < 𝑦 ) ) | |
| 651 | 649 650 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝑦 < +∞ → ¬ 𝐵 < 𝑦 ) ) |
| 652 | 640 651 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ¬ 𝐵 < 𝑦 ) |
| 653 | 468 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 654 | lenlt | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑦 ) ) | |
| 655 | 653 654 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝑦 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑦 ) ) |
| 656 | 652 655 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ≤ 𝐵 ) |
| 657 | 607 656 | sylancom | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ≤ 𝐵 ) |
| 658 | 262 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 659 | 658 385 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 660 | 610 638 657 659 | mpbir3and | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 661 | 608 609 660 422 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 662 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 663 | 661 662 | eleqtrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 664 | 663 426 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ 𝑤 ) |
| 665 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝐴 ) ) | |
| 666 | 29 | ancli | ⊢ ( 𝜑 → ( 𝜑 ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 667 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) ) | |
| 668 | 667 | anbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 669 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 670 | 665 669 | eqeq12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 671 | 668 670 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 672 | 671 137 | vtoclg | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 673 | 5 666 672 | sylc | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 674 | 665 673 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 675 | 674 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑦 = 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 676 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → 𝜑 ) | |
| 677 | 614 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 678 | 448 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → -∞ < 𝑦 ) |
| 679 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 680 | 676 5 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → 𝐴 ∈ ℝ ) |
| 681 | 445 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → 𝑦 ∈ ℝ* ) |
| 682 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → 𝐴 ∈ ℝ* ) |
| 683 | 639 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → 𝑦 < +∞ ) |
| 684 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) | |
| 685 | 442 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → +∞ ∈ ℝ* ) |
| 686 | 682 685 681 | 3jca | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 687 | elioo3g | ⊢ ( 𝑦 ∈ ( 𝐴 (,) +∞ ) ↔ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐴 < 𝑦 ∧ 𝑦 < +∞ ) ) ) | |
| 688 | 687 | notbii | ⊢ ( ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ↔ ¬ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐴 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 689 | 688 | biimpi | ⊢ ( ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) → ¬ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐴 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 690 | nan | ⊢ ( ( ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) → ¬ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐴 < 𝑦 ∧ 𝑦 < +∞ ) ) ) ↔ ( ( ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ∧ ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ¬ ( 𝐴 < 𝑦 ∧ 𝑦 < +∞ ) ) ) | |
| 691 | 689 690 | mpbi | ⊢ ( ( ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ∧ ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) → ¬ ( 𝐴 < 𝑦 ∧ 𝑦 < +∞ ) ) |
| 692 | 684 686 691 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ¬ ( 𝐴 < 𝑦 ∧ 𝑦 < +∞ ) ) |
| 693 | ancom | ⊢ ( ( 𝐴 < 𝑦 ∧ 𝑦 < +∞ ) ↔ ( 𝑦 < +∞ ∧ 𝐴 < 𝑦 ) ) | |
| 694 | 692 693 | sylnib | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ¬ ( 𝑦 < +∞ ∧ 𝐴 < 𝑦 ) ) |
| 695 | nan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ¬ ( 𝑦 < +∞ ∧ 𝐴 < 𝑦 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑦 < +∞ ) → ¬ 𝐴 < 𝑦 ) ) | |
| 696 | 694 695 | mpbi | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑦 < +∞ ) → ¬ 𝐴 < 𝑦 ) |
| 697 | 683 696 | mpdan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ¬ 𝐴 < 𝑦 ) |
| 698 | 681 682 697 | xrnltled | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → 𝑦 ≤ 𝐴 ) |
| 699 | 698 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → 𝑦 ≤ 𝐴 ) |
| 700 | neqne | ⊢ ( ¬ 𝑦 = 𝐴 → 𝑦 ≠ 𝐴 ) | |
| 701 | 700 | necomd | ⊢ ( ¬ 𝑦 = 𝐴 → 𝐴 ≠ 𝑦 ) |
| 702 | 701 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → 𝐴 ≠ 𝑦 ) |
| 703 | 679 680 699 702 | leneltd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → 𝑦 < 𝐴 ) |
| 704 | 678 703 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → ( -∞ < 𝑦 ∧ 𝑦 < 𝐴 ) ) |
| 705 | 677 704 618 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → 𝑦 ∈ ( -∞ (,) 𝐴 ) ) |
| 706 | 676 705 625 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑦 = 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 707 | 675 706 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 708 | 707 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 709 | 708 | ad4ant14 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 710 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 711 | 709 710 | eqeltrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) |
| 712 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐴 (,) +∞ ) ) → ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 713 | 711 712 | condan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → 𝑦 ∈ ( 𝐴 (,) +∞ ) ) |
| 714 | 606 611 713 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ ( 𝐴 (,) +∞ ) ) |
| 715 | 664 714 | elind | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) |
| 716 | 715 | adantlr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) |
| 717 | pm5.6 | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ ¬ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ↔ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑦 ∈ ( 𝐵 (,) +∞ ) ∨ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ) ) | |
| 718 | 716 717 | mpbi | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑦 ∈ ( 𝐵 (,) +∞ ) ∨ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ) |
| 719 | 718 | orcomd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∨ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) ) |
| 720 | elun | ⊢ ( 𝑦 ∈ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∨ 𝑦 ∈ ( 𝐵 (,) +∞ ) ) ) | |
| 721 | 719 720 | sylibr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) |
| 722 | 721 | 3adantll2 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) |
| 723 | simp1ll | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝜑 ) | |
| 724 | 723 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝜑 ) |
| 725 | simpll3 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 726 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) | |
| 727 | 504 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝐺 Fn ℝ ) |
| 728 | ioossre | ⊢ ( 𝐴 (,) +∞ ) ⊆ ℝ | |
| 729 | 728 | olci | ⊢ ( 𝑤 ⊆ ℝ ∨ ( 𝐴 (,) +∞ ) ⊆ ℝ ) |
| 730 | inss | ⊢ ( ( 𝑤 ⊆ ℝ ∨ ( 𝐴 (,) +∞ ) ⊆ ℝ ) → ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ⊆ ℝ ) | |
| 731 | 729 730 | ax-mp | ⊢ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ⊆ ℝ |
| 732 | 731 | a1i | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ⊆ ℝ ) |
| 733 | ioossre | ⊢ ( 𝐵 (,) +∞ ) ⊆ ℝ | |
| 734 | 733 | a1i | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐵 (,) +∞ ) ⊆ ℝ ) |
| 735 | unima | ⊢ ( ( 𝐺 Fn ℝ ∧ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ⊆ ℝ ∧ ( 𝐵 (,) +∞ ) ⊆ ℝ ) → ( 𝐺 “ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) = ( ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∪ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) ) | |
| 736 | 727 732 734 735 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) = ( ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∪ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) ) |
| 737 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ 𝐵 < 𝑦 ) → 𝜑 ) | |
| 738 | 731 | sseli | ⊢ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) → 𝑦 ∈ ℝ ) |
| 739 | 738 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ 𝐵 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 740 | 737 739 446 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ 𝐵 < 𝑦 ) → ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 741 | simpr | ⊢ ( ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∧ 𝐵 < 𝑦 ) → 𝐵 < 𝑦 ) | |
| 742 | 738 | ltpnfd | ⊢ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) → 𝑦 < +∞ ) |
| 743 | 742 | adantr | ⊢ ( ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∧ 𝐵 < 𝑦 ) → 𝑦 < +∞ ) |
| 744 | 741 743 | jca | ⊢ ( ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∧ 𝐵 < 𝑦 ) → ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) |
| 745 | 744 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ 𝐵 < 𝑦 ) → ( 𝐵 < 𝑦 ∧ 𝑦 < +∞ ) ) |
| 746 | 740 745 376 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ 𝐵 < 𝑦 ) → 𝑦 ∈ ( 𝐵 (,) +∞ ) ) |
| 747 | 737 746 398 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ 𝐵 < 𝑦 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 748 | 747 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ 𝐵 < 𝑦 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 749 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ 𝐵 < 𝑦 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) | |
| 750 | 748 749 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ 𝐵 < 𝑦 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) |
| 751 | 750 | adantl3r | ⊢ ( ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ 𝐵 < 𝑦 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) |
| 752 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝜑 ) | |
| 753 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) | |
| 754 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ¬ 𝐵 < 𝑦 ) | |
| 755 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝜑 ) | |
| 756 | 738 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) → 𝑦 ∈ ℝ ) |
| 757 | 756 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 758 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) → 𝐴 ∈ ℝ ) |
| 759 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) → 𝑦 ∈ ( 𝐴 (,) +∞ ) ) | |
| 760 | 687 | biimpi | ⊢ ( 𝑦 ∈ ( 𝐴 (,) +∞ ) → ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐴 < 𝑦 ∧ 𝑦 < +∞ ) ) ) |
| 761 | 760 | simprld | ⊢ ( 𝑦 ∈ ( 𝐴 (,) +∞ ) → 𝐴 < 𝑦 ) |
| 762 | 759 761 | syl | ⊢ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) → 𝐴 < 𝑦 ) |
| 763 | 762 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) → 𝐴 < 𝑦 ) |
| 764 | 758 756 763 | ltled | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) → 𝐴 ≤ 𝑦 ) |
| 765 | 764 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝐴 ≤ 𝑦 ) |
| 766 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ¬ 𝐵 < 𝑦 ) | |
| 767 | 755 757 468 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 768 | 767 654 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝑦 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑦 ) ) |
| 769 | 766 768 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝑦 ≤ 𝐵 ) |
| 770 | 262 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 771 | 770 385 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 772 | 757 765 769 771 | mpbir3and | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 773 | 755 772 137 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 774 | 752 753 754 773 | syl21anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 775 | elinel1 | ⊢ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) → 𝑦 ∈ 𝑤 ) | |
| 776 | 775 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝑦 ∈ 𝑤 ) |
| 777 | 776 772 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 778 | 777 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝑦 ∈ 𝑤 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 779 | 778 149 | sylibr | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 780 | 195 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ◡ 𝐹 “ 𝑢 ) ) |
| 781 | 779 780 | eleqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 782 | 20 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 783 | 782 143 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) ) ) |
| 784 | 781 783 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) ) |
| 785 | 784 | simprd | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) |
| 786 | 785 | adantllr | ⊢ ( ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) |
| 787 | 774 786 | eqeltrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∧ ¬ 𝐵 < 𝑦 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) |
| 788 | 751 787 | pm2.61dan | ⊢ ( ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) |
| 789 | 788 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ∀ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) |
| 790 | 504 | fndmd | ⊢ ( 𝜑 → dom 𝐺 = ℝ ) |
| 791 | 731 790 | sseqtrrid | ⊢ ( 𝜑 → ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ⊆ dom 𝐺 ) |
| 792 | 166 791 | jca | ⊢ ( 𝜑 → ( Fun 𝐺 ∧ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ⊆ dom 𝐺 ) ) |
| 793 | 792 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( Fun 𝐺 ∧ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ⊆ dom 𝐺 ) ) |
| 794 | funimass4 | ⊢ ( ( Fun 𝐺 ∧ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ⊆ dom 𝐺 ) → ( ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ⊆ 𝑢 ↔ ∀ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ) | |
| 795 | 793 794 | syl | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ⊆ 𝑢 ↔ ∀ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ) |
| 796 | 789 795 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ⊆ 𝑢 ) |
| 797 | 338 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ⊆ 𝑢 ) |
| 798 | 796 797 | unssd | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ) ∪ ( 𝐺 “ ( 𝐵 (,) +∞ ) ) ) ⊆ 𝑢 ) |
| 799 | 736 798 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ 𝑢 ) |
| 800 | 724 725 726 799 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ 𝑢 ) |
| 801 | eleq2 | ⊢ ( 𝑣 = ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) ) | |
| 802 | imaeq2 | ⊢ ( 𝑣 = ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) → ( 𝐺 “ 𝑣 ) = ( 𝐺 “ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) ) | |
| 803 | 802 | sseq1d | ⊢ ( 𝑣 = ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) → ( ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ↔ ( 𝐺 “ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ 𝑢 ) ) |
| 804 | 801 803 | anbi12d | ⊢ ( 𝑣 = ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) → ( ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝑦 ∈ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ∧ ( 𝐺 “ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ 𝑢 ) ) ) |
| 805 | 804 | rspcev | ⊢ ( ( ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 ∧ ( 𝑦 ∈ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ∧ ( 𝐺 “ ( ( 𝑤 ∩ ( 𝐴 (,) +∞ ) ) ∪ ( 𝐵 (,) +∞ ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 806 | 605 722 800 805 | syl12anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 807 | simpll2 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑤 ∈ 𝐽 ) | |
| 808 | iooretop | ⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) | |
| 809 | 808 2 | eleqtrri | ⊢ ( 𝐴 (,) 𝐵 ) ∈ 𝐽 |
| 810 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑤 ∈ 𝐽 ∧ ( 𝐴 (,) 𝐵 ) ∈ 𝐽 ) → ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∈ 𝐽 ) | |
| 811 | 79 809 810 | mp3an13 | ⊢ ( 𝑤 ∈ 𝐽 → ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∈ 𝐽 ) |
| 812 | 807 811 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∈ 𝐽 ) |
| 813 | simp-4r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ℝ ) | |
| 814 | 637 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝐴 ≤ 𝑦 ) |
| 815 | simpll | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝜑 ∧ 𝑦 ∈ ℝ ) ) | |
| 816 | 815 404 656 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ≤ 𝐵 ) |
| 817 | 816 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ≤ 𝐵 ) |
| 818 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝜑 ) | |
| 819 | 818 262 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 820 | 819 385 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 821 | 813 814 817 820 | mpbir3and | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 822 | 821 | adantllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 823 | 818 821 137 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 824 | 823 | adantllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 825 | simp-4r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) | |
| 826 | 824 825 | eqeltrrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) |
| 827 | simp-5l | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝜑 ) | |
| 828 | 827 20 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 829 | 828 143 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) ) ) |
| 830 | 822 826 829 | mpbir2and | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 831 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 832 | 830 831 | eleqtrd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 833 | 832 426 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ 𝑤 ) |
| 834 | simp-5r | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ℝ ) | |
| 835 | 827 834 822 | jca31 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 836 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) | |
| 837 | 826 836 | jca | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ) |
| 838 | nelneq | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ¬ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 839 | 669 | necon3bi | ⊢ ( ¬ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) → 𝑦 ≠ 𝐴 ) |
| 840 | 837 838 839 | 3syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ≠ 𝐴 ) |
| 841 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) | |
| 842 | 826 841 | jca | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) ) |
| 843 | nelneq | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ¬ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 844 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 845 | 844 | necon3bi | ⊢ ( ¬ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐵 ) → 𝑦 ≠ 𝐵 ) |
| 846 | 842 843 845 | 3syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ≠ 𝐵 ) |
| 847 | 613 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ≠ 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 848 | 441 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ≠ 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 849 | 444 | ad4antlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ≠ 𝐵 ) → 𝑦 ∈ ℝ* ) |
| 850 | 847 848 849 | 3jca | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ≠ 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
| 851 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) → 𝑦 ≠ 𝐴 ) | |
| 852 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 853 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ∈ ℝ ) | |
| 854 | 262 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 855 | 854 385 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
| 856 | 135 855 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
| 857 | 856 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑦 ) |
| 858 | 857 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑦 ) |
| 859 | 852 853 858 | 3jca | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ) ) |
| 860 | 859 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ) ) |
| 861 | leltne | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ) → ( 𝐴 < 𝑦 ↔ 𝑦 ≠ 𝐴 ) ) | |
| 862 | 860 861 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) → ( 𝐴 < 𝑦 ↔ 𝑦 ≠ 𝐴 ) ) |
| 863 | 851 862 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) → 𝐴 < 𝑦 ) |
| 864 | 863 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ≠ 𝐵 ) → 𝐴 < 𝑦 ) |
| 865 | necom | ⊢ ( 𝑦 ≠ 𝐵 ↔ 𝐵 ≠ 𝑦 ) | |
| 866 | 865 | biimpi | ⊢ ( 𝑦 ≠ 𝐵 → 𝐵 ≠ 𝑦 ) |
| 867 | 866 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐵 ) → 𝐵 ≠ 𝑦 ) |
| 868 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 869 | 856 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ≤ 𝐵 ) |
| 870 | 869 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑦 ≤ 𝐵 ) |
| 871 | 853 868 870 | 3jca | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ≤ 𝐵 ) ) |
| 872 | 871 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐵 ) → ( 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ≤ 𝐵 ) ) |
| 873 | leltne | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑦 ≤ 𝐵 ) → ( 𝑦 < 𝐵 ↔ 𝐵 ≠ 𝑦 ) ) | |
| 874 | 872 873 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐵 ) → ( 𝑦 < 𝐵 ↔ 𝐵 ≠ 𝑦 ) ) |
| 875 | 867 874 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐵 ) → 𝑦 < 𝐵 ) |
| 876 | 875 | adantlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ≠ 𝐵 ) → 𝑦 < 𝐵 ) |
| 877 | 864 876 | jca | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ≠ 𝐵 ) → ( 𝐴 < 𝑦 ∧ 𝑦 < 𝐵 ) ) |
| 878 | elioo3g | ⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝐴 < 𝑦 ∧ 𝑦 < 𝐵 ) ) ) | |
| 879 | 850 877 878 | sylanbrc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ≠ 𝐴 ) ∧ 𝑦 ≠ 𝐵 ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 880 | 835 840 846 879 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 881 | 833 880 | elind | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) |
| 882 | 881 | 3adantll2 | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) |
| 883 | 165 | a1i | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) → Fun 𝐺 ) |
| 884 | fvelima | ⊢ ( ( Fun 𝐺 ∧ 𝑡 ∈ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) → ∃ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ( 𝐺 ‘ 𝑦 ) = 𝑡 ) | |
| 885 | 883 884 | sylancom | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) → ∃ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ( 𝐺 ‘ 𝑦 ) = 𝑡 ) |
| 886 | simp3 | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑦 ) = 𝑡 ) → ( 𝐺 ‘ 𝑦 ) = 𝑡 ) | |
| 887 | simp1l | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑦 ) = 𝑡 ) → 𝜑 ) | |
| 888 | inss2 | ⊢ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ⊆ ( 𝐴 (,) 𝐵 ) | |
| 889 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 890 | 888 889 | sstri | ⊢ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 891 | 890 | sseli | ⊢ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 892 | 891 | 3ad2ant2 | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑦 ) = 𝑡 ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 893 | 887 892 137 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑦 ) = 𝑡 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 894 | sslin | ⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ⊆ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 895 | 889 894 | ax-mp | ⊢ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ⊆ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) |
| 896 | 895 | sseli | ⊢ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 897 | 896 | adantl | ⊢ ( ( ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) → 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 898 | 195 | adantr | ⊢ ( ( ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ◡ 𝐹 “ 𝑢 ) ) |
| 899 | 897 898 | eleqtrd | ⊢ ( ( ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 900 | 899 | adantll | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 901 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 902 | 901 143 | syl | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) ) ) |
| 903 | 900 902 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) ) |
| 904 | 903 | simprd | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) |
| 905 | 904 | 3adant3 | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑦 ) = 𝑡 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑢 ) |
| 906 | 893 905 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑦 ) = 𝑡 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) |
| 907 | 886 906 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝐺 ‘ 𝑦 ) = 𝑡 ) → 𝑡 ∈ 𝑢 ) |
| 908 | 907 | 3exp | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ‘ 𝑦 ) = 𝑡 → 𝑡 ∈ 𝑢 ) ) ) |
| 909 | 908 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) → ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ‘ 𝑦 ) = 𝑡 → 𝑡 ∈ 𝑢 ) ) ) |
| 910 | 909 | rexlimdv | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) → ( ∃ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ( 𝐺 ‘ 𝑦 ) = 𝑡 → 𝑡 ∈ 𝑢 ) ) |
| 911 | 885 910 | mpd | ⊢ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑡 ∈ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) → 𝑡 ∈ 𝑢 ) |
| 912 | 911 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ∀ 𝑡 ∈ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) 𝑡 ∈ 𝑢 ) |
| 913 | dfss3 | ⊢ ( ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ⊆ 𝑢 ↔ ∀ 𝑡 ∈ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) 𝑡 ∈ 𝑢 ) | |
| 914 | 912 913 | sylibr | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ⊆ 𝑢 ) |
| 915 | 914 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ⊆ 𝑢 ) |
| 916 | 915 | 3adant2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ⊆ 𝑢 ) |
| 917 | 916 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ⊆ 𝑢 ) |
| 918 | eleq2 | ⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) | |
| 919 | imaeq2 | ⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 “ 𝑣 ) = ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ) | |
| 920 | 919 | sseq1d | ⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ↔ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ⊆ 𝑢 ) ) |
| 921 | 918 920 | anbi12d | ⊢ ( 𝑣 = ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ⊆ 𝑢 ) ) ) |
| 922 | 921 | rspcev | ⊢ ( ( ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∈ 𝐽 ∧ ( 𝑦 ∈ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝐺 “ ( 𝑤 ∩ ( 𝐴 (,) 𝐵 ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 923 | 812 882 917 922 | syl12anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 924 | 806 923 | pm2.61dan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 925 | 596 924 | pm2.61dan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 926 | 93 925 | syld3an1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) ∧ 𝑤 ∈ 𝐽 ∧ ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 927 | 926 | rexlimdv3a | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) → ( ∃ 𝑤 ∈ 𝐽 ( ◡ 𝐹 “ 𝑢 ) = ( 𝑤 ∩ ( 𝐴 [,] 𝐵 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 928 | 88 927 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 ) → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 929 | 928 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ) → ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 930 | 929 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 931 | 11 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐽 ∈ ( TopOn ‘ ℝ ) ) |
| 932 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝑌 ) → ( 𝐾 ↾t ran 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) | |
| 933 | 17 71 932 | syl2anc | ⊢ ( 𝜑 → ( 𝐾 ↾t ran 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 934 | 933 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐾 ↾t ran 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 935 | iscnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝐾 ↾t ran 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ∧ 𝑦 ∈ ℝ ) → ( 𝐺 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t ran 𝐹 ) ) ‘ 𝑦 ) ↔ ( 𝐺 : ℝ ⟶ ran 𝐹 ∧ ∀ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) | |
| 936 | 931 934 466 935 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐺 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t ran 𝐹 ) ) ‘ 𝑦 ) ↔ ( 𝐺 : ℝ ⟶ ran 𝐹 ∧ ∀ 𝑢 ∈ ( 𝐾 ↾t ran 𝐹 ) ( ( 𝐺 ‘ 𝑦 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑦 ∈ 𝑣 ∧ ( 𝐺 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) |
| 937 | 66 930 936 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐺 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t ran 𝐹 ) ) ‘ 𝑦 ) ) |
| 938 | 937 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ 𝐺 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t ran 𝐹 ) ) ‘ 𝑦 ) ) |
| 939 | cncnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝐾 ↾t ran 𝐹 ) ∈ ( TopOn ‘ ran 𝐹 ) ) → ( 𝐺 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ↔ ( 𝐺 : ℝ ⟶ ran 𝐹 ∧ ∀ 𝑦 ∈ ℝ 𝐺 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t ran 𝐹 ) ) ‘ 𝑦 ) ) ) ) | |
| 940 | 11 933 939 | sylancr | ⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ↔ ( 𝐺 : ℝ ⟶ ran 𝐹 ∧ ∀ 𝑦 ∈ ℝ 𝐺 ∈ ( ( 𝐽 CnP ( 𝐾 ↾t ran 𝐹 ) ) ‘ 𝑦 ) ) ) ) |
| 941 | 65 938 940 | mpbir2and | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) |
| 942 | fnssres | ⊢ ( ( 𝐺 Fn ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( 𝐺 ↾ ( 𝐴 [,] 𝐵 ) ) Fn ( 𝐴 [,] 𝐵 ) ) | |
| 943 | 504 12 942 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 [,] 𝐵 ) ) Fn ( 𝐴 [,] 𝐵 ) ) |
| 944 | fvres | ⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐺 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 945 | 944 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 946 | 945 137 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 947 | 943 20 946 | eqfnfvd | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 [,] 𝐵 ) ) = 𝐹 ) |
| 948 | 941 947 | jca | ⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ∧ ( 𝐺 ↾ ( 𝐴 [,] 𝐵 ) ) = 𝐹 ) ) |