This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subclass of a set is a set. Deduction form of ssexg . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssexd.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | |
| ssexd.2 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | ||
| Assertion | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexd.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) | |
| 2 | ssexd.2 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 3 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ V ) | |
| 4 | 2 1 3 | syl2anc | ⊢ ( 𝜑 → 𝐴 ∈ V ) |