This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylnibr.1 | ⊢ ( 𝜑 → ¬ 𝜓 ) | |
| sylnibr.2 | ⊢ ( 𝜒 ↔ 𝜓 ) | ||
| Assertion | sylnibr | ⊢ ( 𝜑 → ¬ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnibr.1 | ⊢ ( 𝜑 → ¬ 𝜓 ) | |
| 2 | sylnibr.2 | ⊢ ( 𝜒 ↔ 𝜓 ) | |
| 3 | 2 | bicomi | ⊢ ( 𝜓 ↔ 𝜒 ) |
| 4 | 1 3 | sylnib | ⊢ ( 𝜑 → ¬ 𝜒 ) |