This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leloe | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lenlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) | |
| 2 | axlttri | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ) ) |
| 4 | 3 | con2bid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ↔ ¬ 𝐵 < 𝐴 ) ) |
| 5 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 6 | 5 | orbi1i | ⊢ ( ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 < 𝐵 ) ) |
| 7 | orcom | ⊢ ( ( 𝐴 = 𝐵 ∨ 𝐴 < 𝐵 ) ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) |
| 9 | 4 8 | bitr3di | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 10 | 1 9 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |