This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Hankins, 10-Jul-2009) (Proof shortened by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnrest2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) ) |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3 4 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 6 | 5 | ffnd | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 Fn ∪ 𝐽 ) |
| 7 | 6 | a1i | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 Fn ∪ 𝐽 ) ) |
| 8 | simp2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ran 𝐹 ⊆ 𝐵 ) | |
| 9 | 7 8 | jctird | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 ⊆ 𝐵 ) ) ) |
| 10 | df-f | ⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 ↔ ( 𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 ⊆ 𝐵 ) ) | |
| 11 | 9 10 | imbitrrdi | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) |
| 12 | 2 11 | jcad | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ) |
| 13 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) → 𝐽 ∈ Top ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → 𝐽 ∈ Top ) |
| 15 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 16 | 14 15 | sylib | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 17 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) | |
| 18 | 17 | 3adant2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 20 | simpr | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) | |
| 21 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) | |
| 22 | 16 19 20 21 | syl3anc | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) |
| 23 | 14 22 | jca | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) → ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) |
| 24 | 23 | ex | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) → ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ) |
| 25 | vex | ⊢ 𝑥 ∈ V | |
| 26 | 25 | inex1 | ⊢ ( 𝑥 ∩ 𝐵 ) ∈ V |
| 27 | 26 | a1i | ⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ∩ 𝐵 ) ∈ V ) |
| 28 | simpl1 | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 29 | toponmax | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 ∈ 𝐾 ) | |
| 30 | 28 29 | syl | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝑌 ∈ 𝐾 ) |
| 31 | simpl3 | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐵 ⊆ 𝑌 ) | |
| 32 | 30 31 | ssexd | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐵 ∈ V ) |
| 33 | elrest | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐵 ∈ V ) → ( 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐾 𝑦 = ( 𝑥 ∩ 𝐵 ) ) ) | |
| 34 | 28 32 33 | syl2anc | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐾 𝑦 = ( 𝑥 ∩ 𝐵 ) ) ) |
| 35 | imaeq2 | ⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ) | |
| 36 | 35 | eleq1d | ⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ∈ 𝐽 ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑦 = ( 𝑥 ∩ 𝐵 ) ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ∈ 𝐽 ) ) |
| 38 | 27 34 37 | ralxfr2d | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ∈ 𝐽 ) ) |
| 39 | simplrr | ⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) | |
| 40 | ffun | ⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 → Fun 𝐹 ) | |
| 41 | inpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ) | |
| 42 | 39 40 41 | 3syl | ⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 43 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 | |
| 44 | cnvimarndm | ⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 | |
| 45 | 43 44 | sseqtrri | ⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) |
| 46 | simpll2 | ⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ran 𝐹 ⊆ 𝐵 ) | |
| 47 | imass2 | ⊢ ( ran 𝐹 ⊆ 𝐵 → ( ◡ 𝐹 “ ran 𝐹 ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ ran 𝐹 ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
| 49 | 45 48 | sstrid | ⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ) |
| 50 | dfss2 | ⊢ ( ( ◡ 𝐹 “ 𝑥 ) ⊆ ( ◡ 𝐹 “ 𝐵 ) ↔ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) | |
| 51 | 49 50 | sylib | ⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝐵 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 52 | 42 51 | eqtrd | ⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 53 | 52 | eleq1d | ⊢ ( ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) ∧ 𝑥 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 54 | 53 | ralbidva | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ ( 𝑥 ∩ 𝐵 ) ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 55 | simprr | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) | |
| 56 | 55 31 | fssd | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 57 | 56 | biantrurd | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 58 | 38 54 57 | 3bitrrd | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ↔ ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 59 | 55 | biantrurd | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 60 | 58 59 | bitrd | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 61 | simprl | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐽 ∈ Top ) | |
| 62 | 61 15 | sylib | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 63 | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) | |
| 64 | 62 28 63 | syl2anc | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 65 | 18 | adantr | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) |
| 66 | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( 𝐾 ↾t 𝐵 ) ∈ ( TopOn ‘ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) | |
| 67 | 62 65 66 | syl2anc | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ↔ ( 𝐹 : ∪ 𝐽 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐾 ↾t 𝐵 ) ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 68 | 60 64 67 | 3bitr4d | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) ∧ ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) ) |
| 69 | 68 | ex | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( ( 𝐽 ∈ Top ∧ 𝐹 : ∪ 𝐽 ⟶ 𝐵 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) ) ) |
| 70 | 12 24 69 | pm5.21ndd | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t 𝐵 ) ) ) ) |