This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvelrn | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) ↔ ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) ) |
| 5 | 2 4 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) ↔ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) ) ) |
| 6 | funfvop | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) | |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | opeq1 | ⊢ ( 𝑦 = 𝑥 → 〈 𝑦 , ( 𝐹 ‘ 𝑥 ) 〉 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑦 = 𝑥 → ( 〈 𝑦 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ↔ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) ) |
| 10 | 7 9 | spcev | ⊢ ( 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 → ∃ 𝑦 〈 𝑦 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
| 11 | 6 10 | syl | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ∃ 𝑦 〈 𝑦 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
| 12 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 13 | 12 | elrn2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ↔ ∃ 𝑦 〈 𝑦 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
| 14 | 11 13 | sylibr | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 15 | 5 14 | vtoclg | ⊢ ( 𝐴 ∈ dom 𝐹 → ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) ) |
| 16 | 15 | anabsi7 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |