This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 ∈ V ) | |
| 2 | uniexg | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) | |
| 3 | eleq1 | ⊢ ( 𝐵 = ∪ 𝐽 → ( 𝐵 ∈ V ↔ ∪ 𝐽 ∈ V ) ) | |
| 4 | 2 3 | syl5ibrcom | ⊢ ( 𝐽 ∈ Top → ( 𝐵 = ∪ 𝐽 → 𝐵 ∈ V ) ) |
| 5 | 4 | imp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽 ) → 𝐵 ∈ V ) |
| 6 | eqeq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝑗 ) ) | |
| 7 | 6 | rabbidv | ⊢ ( 𝑏 = 𝐵 → { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } = { 𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗 } ) |
| 8 | df-topon | ⊢ TopOn = ( 𝑏 ∈ V ↦ { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ) | |
| 9 | vpwex | ⊢ 𝒫 𝑏 ∈ V | |
| 10 | 9 | pwex | ⊢ 𝒫 𝒫 𝑏 ∈ V |
| 11 | rabss | ⊢ ( { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ⊆ 𝒫 𝒫 𝑏 ↔ ∀ 𝑗 ∈ Top ( 𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏 ) ) | |
| 12 | pwuni | ⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 | |
| 13 | pweq | ⊢ ( 𝑏 = ∪ 𝑗 → 𝒫 𝑏 = 𝒫 ∪ 𝑗 ) | |
| 14 | 12 13 | sseqtrrid | ⊢ ( 𝑏 = ∪ 𝑗 → 𝑗 ⊆ 𝒫 𝑏 ) |
| 15 | velpw | ⊢ ( 𝑗 ∈ 𝒫 𝒫 𝑏 ↔ 𝑗 ⊆ 𝒫 𝑏 ) | |
| 16 | 14 15 | sylibr | ⊢ ( 𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏 ) |
| 17 | 16 | a1i | ⊢ ( 𝑗 ∈ Top → ( 𝑏 = ∪ 𝑗 → 𝑗 ∈ 𝒫 𝒫 𝑏 ) ) |
| 18 | 11 17 | mprgbir | ⊢ { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ⊆ 𝒫 𝒫 𝑏 |
| 19 | 10 18 | ssexi | ⊢ { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ∈ V |
| 20 | 7 8 19 | fvmpt3i | ⊢ ( 𝐵 ∈ V → ( TopOn ‘ 𝐵 ) = { 𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗 } ) |
| 21 | 20 | eleq2d | ⊢ ( 𝐵 ∈ V → ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ↔ 𝐽 ∈ { 𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗 } ) ) |
| 22 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑗 = 𝐽 → ( 𝐵 = ∪ 𝑗 ↔ 𝐵 = ∪ 𝐽 ) ) |
| 24 | 23 | elrab | ⊢ ( 𝐽 ∈ { 𝑗 ∈ Top ∣ 𝐵 = ∪ 𝑗 } ↔ ( 𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽 ) ) |
| 25 | 21 24 | bitrdi | ⊢ ( 𝐵 ∈ V → ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽 ) ) ) |
| 26 | 1 5 25 | pm5.21nii | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽 ) ) |