This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mnflt | ⊢ ( 𝐴 ∈ ℝ → -∞ < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ -∞ = -∞ | |
| 2 | olc | ⊢ ( ( -∞ = -∞ ∧ 𝐴 ∈ ℝ ) → ( ( -∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( -∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ → ( ( -∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( -∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) |
| 4 | 3 | olcd | ⊢ ( 𝐴 ∈ ℝ → ( ( ( ( -∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ -∞ <ℝ 𝐴 ) ∨ ( -∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( -∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( -∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) ) |
| 5 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 6 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 7 | ltxr | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ < 𝐴 ↔ ( ( ( ( -∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ -∞ <ℝ 𝐴 ) ∨ ( -∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( -∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( -∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) ) ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( -∞ < 𝐴 ↔ ( ( ( ( -∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ -∞ <ℝ 𝐴 ) ∨ ( -∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( -∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( -∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) ) ) |
| 9 | 4 8 | mpbird | ⊢ ( 𝐴 ∈ ℝ → -∞ < 𝐴 ) |