This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elind.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| elind.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | elind | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elind.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 2 | elind.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | elin | ⊢ ( 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) | |
| 4 | 1 2 3 | sylanbrc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∩ 𝐵 ) ) |