This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopg | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) |
| 3 | 2 | simprd | ⊢ ( 𝐽 ∈ Top → ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) |
| 4 | ineq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∩ 𝑦 ) = ( 𝐴 ∩ 𝑦 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ↔ ( 𝐴 ∩ 𝑦 ) ∈ 𝐽 ) ) |
| 6 | ineq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ∩ 𝑦 ) = ( 𝐴 ∩ 𝐵 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∩ 𝑦 ) ∈ 𝐽 ↔ ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) ) |
| 8 | 5 7 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) ) |
| 9 | 3 8 | syl5com | ⊢ ( 𝐽 ∈ Top → ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) ) |
| 10 | 9 | 3impib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) |