This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005) (Proof shortened by Anthony Hart, 29-Aug-2011) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mnfxr | ⊢ -∞ ∈ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mnf | ⊢ -∞ = 𝒫 +∞ | |
| 2 | pnfex | ⊢ +∞ ∈ V | |
| 3 | 2 | pwex | ⊢ 𝒫 +∞ ∈ V |
| 4 | 1 3 | eqeltri | ⊢ -∞ ∈ V |
| 5 | 4 | prid2 | ⊢ -∞ ∈ { +∞ , -∞ } |
| 6 | elun2 | ⊢ ( -∞ ∈ { +∞ , -∞ } → -∞ ∈ ( ℝ ∪ { +∞ , -∞ } ) ) | |
| 7 | 5 6 | ax-mp | ⊢ -∞ ∈ ( ℝ ∪ { +∞ , -∞ } ) |
| 8 | df-xr | ⊢ ℝ* = ( ℝ ∪ { +∞ , -∞ } ) | |
| 9 | 7 8 | eleqtrri | ⊢ -∞ ∈ ℝ* |