This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltpnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ +∞ = +∞ | |
| 2 | orc | ⊢ ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) → ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ ∈ ℝ ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ ∈ ℝ ) ) ) |
| 4 | 3 | olcd | ⊢ ( 𝐴 ∈ ℝ → ( ( ( ( 𝐴 ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ 𝐴 <ℝ +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ ∈ ℝ ) ) ) ) |
| 5 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 6 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 7 | ltxr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 < +∞ ↔ ( ( ( ( 𝐴 ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ 𝐴 <ℝ +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ ∈ ℝ ) ) ) ) ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < +∞ ↔ ( ( ( ( 𝐴 ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ 𝐴 <ℝ +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( 𝐴 ∈ ℝ ∧ +∞ = +∞ ) ∨ ( 𝐴 = -∞ ∧ +∞ ∈ ℝ ) ) ) ) ) |
| 9 | 4 8 | mpbird | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) |