This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 2 | id | ⊢ ( 𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋 ) | |
| 3 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 4 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → 𝐴 ∈ V ) | |
| 5 | 2 3 4 | syl2anr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 6 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) | |
| 7 | 1 5 6 | syl2an2r | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| 8 | simpr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 9 | sseqin2 | ⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝑋 ∩ 𝐴 ) = 𝐴 ) | |
| 10 | 8 9 | sylib | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑋 ∩ 𝐴 ) = 𝐴 ) |
| 11 | simpl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 12 | 3 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 13 | elrestr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐽 ) → ( 𝑋 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) | |
| 14 | 11 5 12 13 | syl3anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑋 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) |
| 15 | 10 14 | eqeltrrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ ( 𝐽 ↾t 𝐴 ) ) |
| 16 | elssuni | ⊢ ( 𝐴 ∈ ( 𝐽 ↾t 𝐴 ) → 𝐴 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 18 | restval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) | |
| 19 | 5 18 | syldan | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ) |
| 20 | inss2 | ⊢ ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 | |
| 21 | vex | ⊢ 𝑥 ∈ V | |
| 22 | 21 | inex1 | ⊢ ( 𝑥 ∩ 𝐴 ) ∈ V |
| 23 | 22 | elpw | ⊢ ( ( 𝑥 ∩ 𝐴 ) ∈ 𝒫 𝐴 ↔ ( 𝑥 ∩ 𝐴 ) ⊆ 𝐴 ) |
| 24 | 20 23 | mpbir | ⊢ ( 𝑥 ∩ 𝐴 ) ∈ 𝒫 𝐴 |
| 25 | 24 | a1i | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝒫 𝐴 ) |
| 26 | 25 | fmpttd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) : 𝐽 ⟶ 𝒫 𝐴 ) |
| 27 | 26 | frnd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ 𝐴 ) ) ⊆ 𝒫 𝐴 ) |
| 28 | 19 27 | eqsstrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ) |
| 29 | sspwuni | ⊢ ( ( 𝐽 ↾t 𝐴 ) ⊆ 𝒫 𝐴 ↔ ∪ ( 𝐽 ↾t 𝐴 ) ⊆ 𝐴 ) | |
| 30 | 28 29 | sylib | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ∪ ( 𝐽 ↾t 𝐴 ) ⊆ 𝐴 ) |
| 31 | 17 30 | eqssd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 32 | istopon | ⊢ ( ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ↔ ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) ) | |
| 33 | 7 31 32 | sylanbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |