This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by NM, 27-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leltne | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) | |
| 2 | simpl | ⊢ ( ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) → ¬ 𝐴 < 𝐵 ) | |
| 3 | 1 2 | biimtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 → ¬ 𝐴 < 𝐵 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 = 𝐵 → ¬ 𝐴 < 𝐵 ) ) |
| 5 | leloe | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 6 | 5 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) |
| 7 | 6 | ord | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ¬ 𝐴 < 𝐵 → 𝐴 = 𝐵 ) ) |
| 8 | 4 7 | impbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 = 𝐵 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 9 | 8 | necon2abid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ 𝐴 ≠ 𝐵 ) ) |
| 10 | necom | ⊢ ( 𝐵 ≠ 𝐴 ↔ 𝐴 ≠ 𝐵 ) | |
| 11 | 9 10 | bitr4di | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |
| 12 | 11 | 3impa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴 ) ) |