This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A the absolute value of a continuous function on a closed interval, that is never 0, has a strictly positive lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncficcgt0.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) | |
| cncficcgt0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| cncficcgt0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| cncficcgt0.aleb | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| cncficcgt0.fcn | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) ) | ||
| Assertion | cncficcgt0 | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncficcgt0.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) | |
| 2 | cncficcgt0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | cncficcgt0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 4 | cncficcgt0.aleb | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 5 | cncficcgt0.fcn | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) ) | |
| 6 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) ) | |
| 7 | ffun | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) → Fun 𝐹 ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → Fun 𝐹 ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 11 | 5 6 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) ) |
| 12 | 11 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) |
| 13 | 12 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = dom 𝐹 ) |
| 15 | 10 14 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑐 ∈ dom 𝐹 ) |
| 16 | fvco | ⊢ ( ( Fun 𝐹 ∧ 𝑐 ∈ dom 𝐹 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) = ( abs ‘ ( 𝐹 ‘ 𝑐 ) ) ) | |
| 17 | 9 15 16 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) = ( abs ‘ ( 𝐹 ‘ 𝑐 ) ) ) |
| 18 | 11 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ( ℝ ∖ { 0 } ) ) |
| 19 | 18 | eldifad | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℝ ) |
| 20 | 19 | recnd | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℂ ) |
| 21 | eldifsni | ⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ( ℝ ∖ { 0 } ) → ( 𝐹 ‘ 𝑐 ) ≠ 0 ) | |
| 22 | 18 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑐 ) ≠ 0 ) |
| 23 | 20 22 | absrpcld | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑐 ) ) ∈ ℝ+ ) |
| 24 | 17 23 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ∈ ℝ+ ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ∈ ℝ+ ) |
| 26 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 27 | nfcv | ⊢ Ⅎ 𝑥 ( 𝐴 [,] 𝐵 ) | |
| 28 | nfcv | ⊢ Ⅎ 𝑥 abs | |
| 29 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) | |
| 30 | 1 29 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 31 | 28 30 | nfco | ⊢ Ⅎ 𝑥 ( abs ∘ 𝐹 ) |
| 32 | nfcv | ⊢ Ⅎ 𝑥 𝑐 | |
| 33 | 31 32 | nffv | ⊢ Ⅎ 𝑥 ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) |
| 34 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 35 | nfcv | ⊢ Ⅎ 𝑥 𝑑 | |
| 36 | 31 35 | nffv | ⊢ Ⅎ 𝑥 ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) |
| 37 | 33 34 36 | nfbr | ⊢ Ⅎ 𝑥 ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) |
| 38 | 27 37 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) |
| 39 | 26 38 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) |
| 40 | fveq2 | ⊢ ( 𝑑 = 𝑥 → ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) = ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) | |
| 41 | 40 | breq2d | ⊢ ( 𝑑 = 𝑥 → ( ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ↔ ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 42 | 41 | rspccva | ⊢ ( ( ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 43 | 42 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 44 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 45 | 44 | a1i | ⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
| 46 | difss | ⊢ ( ℝ ∖ { 0 } ) ⊆ ℝ | |
| 47 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 48 | 46 47 | sstri | ⊢ ( ℝ ∖ { 0 } ) ⊆ ℂ |
| 49 | 48 | a1i | ⊢ ( 𝜑 → ( ℝ ∖ { 0 } ) ⊆ ℂ ) |
| 50 | 11 49 | fssd | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 51 | fcompt | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) → ( abs ∘ 𝐹 ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 52 | 45 50 51 | syl2anc | ⊢ ( 𝜑 → ( abs ∘ 𝐹 ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 53 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 54 | 30 53 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
| 55 | 28 54 | nffv | ⊢ Ⅎ 𝑥 ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) |
| 56 | nfcv | ⊢ Ⅎ 𝑧 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) | |
| 57 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 58 | 57 | fveq2d | ⊢ ( 𝑧 = 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 59 | 55 56 58 | cbvmpt | ⊢ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 60 | 59 | a1i | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 61 | 1 | a1i | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ) |
| 62 | 61 11 | feq1dd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) : ( 𝐴 [,] 𝐵 ) ⟶ ( ℝ ∖ { 0 } ) ) |
| 63 | 62 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ( ℝ ∖ { 0 } ) ) |
| 64 | 61 63 | fvmpt2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 65 | 64 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ 𝐶 ) ) |
| 66 | 65 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ 𝐶 ) ) ) |
| 67 | 52 60 66 | 3eqtrd | ⊢ ( 𝜑 → ( abs ∘ 𝐹 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( abs ‘ 𝐶 ) ) ) |
| 68 | 48 63 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 69 | 68 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 70 | 67 69 | fvmpt2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ 𝐶 ) ) |
| 71 | 70 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑥 ) = ( abs ‘ 𝐶 ) ) |
| 72 | 43 71 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) |
| 73 | 72 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) ) |
| 74 | 39 73 | ralrimi | ⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) |
| 75 | 33 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) |
| 76 | breq1 | ⊢ ( 𝑦 = ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) → ( 𝑦 ≤ ( abs ‘ 𝐶 ) ↔ ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) ) | |
| 77 | 75 76 | ralbid | ⊢ ( 𝑦 = ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) → ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) ) |
| 78 | 77 | rspcev | ⊢ ( ( ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( abs ‘ 𝐶 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ) |
| 79 | 25 74 78 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ) |
| 80 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 81 | cncfss | ⊢ ( ( ( ℝ ∖ { 0 } ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 82 | 49 80 81 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ( ℝ ∖ { 0 } ) ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 83 | 82 5 | sseldd | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 84 | abscncf | ⊢ abs ∈ ( ℂ –cn→ ℝ ) | |
| 85 | 84 | a1i | ⊢ ( 𝜑 → abs ∈ ( ℂ –cn→ ℝ ) ) |
| 86 | 83 85 | cncfco | ⊢ ( 𝜑 → ( abs ∘ 𝐹 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 87 | 2 3 4 86 | evthicc | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑏 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑎 ) ∧ ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) ) |
| 88 | 87 | simprd | ⊢ ( 𝜑 → ∃ 𝑐 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑑 ∈ ( 𝐴 [,] 𝐵 ) ( ( abs ∘ 𝐹 ) ‘ 𝑐 ) ≤ ( ( abs ∘ 𝐹 ) ‘ 𝑑 ) ) |
| 89 | 79 88 | r19.29a | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝑦 ≤ ( abs ‘ 𝐶 ) ) |