This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funimass4 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | ⊢ ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 2 | elima | ⊢ ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) |
| 4 | eqcom | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) | |
| 5 | ssel | ⊢ ( 𝐴 ⊆ dom 𝐹 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹 ) ) | |
| 6 | funbrfvb | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) | |
| 7 | 6 | ex | ⊢ ( Fun 𝐹 → ( 𝑥 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) ) |
| 8 | 5 7 | syl9 | ⊢ ( 𝐴 ⊆ dom 𝐹 → ( Fun 𝐹 → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) ) ) |
| 9 | 8 | imp31 | ⊢ ( ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
| 10 | 4 9 | bitrid | ⊢ ( ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑥 𝐹 𝑦 ) ) |
| 11 | 10 | rexbidva | ⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
| 12 | 3 11 | bitr4id | ⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 13 | 12 | imbi1d | ⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) ) |
| 14 | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) | |
| 15 | 13 14 | bitr4di | ⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) ) |
| 16 | 15 | albidv | ⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) ) |
| 17 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) | |
| 18 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 19 | eleq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 ∈ 𝐵 ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 20 | 18 19 | ceqsalv | ⊢ ( ∀ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 21 | 20 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 22 | 17 21 | bitr3i | ⊢ ( ∀ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 23 | 16 22 | bitrdi | ⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ∀ 𝑦 ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 24 | 1 23 | bitrid | ⊢ ( ( 𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 25 | 24 | ancoms | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |