This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show A e. RR* and B e. RR* . (Contributed by NM, 24-Dec-2006) (Revised by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioo3g | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 2 | 1 | elixx3g | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |