This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006) (Proof shortened by Wolf Lammen, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | condan.1 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) | |
| condan.2 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ¬ 𝜒 ) | ||
| Assertion | condan | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | condan.1 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) | |
| 2 | condan.2 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ¬ 𝜒 ) | |
| 3 | 1 2 | pm2.65da | ⊢ ( 𝜑 → ¬ ¬ 𝜓 ) |
| 4 | 3 | notnotrd | ⊢ ( 𝜑 → 𝜓 ) |