This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ltled.1 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| Assertion | ltnsymd | ⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ltled.1 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | 1 2 3 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 5 | 1 2 | lenltd | ⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 6 | 4 5 | mpbid | ⊢ ( 𝜑 → ¬ 𝐵 < 𝐴 ) |