This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class F is a continuous function from topology J to topology K at point P ". Based on Theorem 7.2(g) of Munkres p. 107. (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnpval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) = { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ) ) |
| 3 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑃 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 ↔ ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 ) ) |
| 5 | imaeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 “ 𝑥 ) = ( 𝐹 “ 𝑥 ) ) | |
| 6 | 5 | sseq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) |
| 7 | 6 | anbi2d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ↔ ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
| 8 | 7 | rexbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) |
| 9 | 4 8 | imbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 11 | 10 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ↔ ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) |
| 12 | toponmax | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 ∈ 𝐾 ) | |
| 13 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 14 | elmapg | ⊢ ( ( 𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐽 ) → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) | |
| 15 | 12 13 14 | syl2anr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 16 | 15 | anbi1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 𝐹 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 17 | 11 16 | bitrid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 18 | 17 | 3adant3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ { 𝑓 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ( 𝑓 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑓 “ 𝑥 ) ⊆ 𝑦 ) ) } ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |
| 19 | 2 18 | bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑦 → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝐹 “ 𝑥 ) ⊆ 𝑦 ) ) ) ) ) |