This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnfp1 . (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 1-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfp1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | ||
| cantnfp1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| cantnfp1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| cantnfp1.s | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) | ||
| cantnfp1.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) | ||
| cantnfp1.e | ⊢ ( 𝜑 → ∅ ∈ 𝑌 ) | ||
| cantnfp1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| cantnfp1.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | ||
| cantnfp1.k | ⊢ 𝐾 = OrdIso ( E , ( 𝐺 supp ∅ ) ) | ||
| cantnfp1.m | ⊢ 𝑀 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | ||
| Assertion | cantnfp1lem3 | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfp1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | |
| 5 | cantnfp1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | cantnfp1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 7 | cantnfp1.s | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) | |
| 8 | cantnfp1.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) | |
| 9 | cantnfp1.e | ⊢ ( 𝜑 → ∅ ∈ 𝑌 ) | |
| 10 | cantnfp1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 11 | cantnfp1.h | ⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 12 | cantnfp1.k | ⊢ 𝐾 = OrdIso ( E , ( 𝐺 supp ∅ ) ) | |
| 13 | cantnfp1.m | ⊢ 𝑀 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 14 | 1 2 3 4 5 6 7 8 | cantnfp1lem1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 15 | 1 2 3 10 14 11 | cantnfval | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( 𝐻 ‘ dom 𝑂 ) ) |
| 16 | 1 2 3 4 5 6 7 8 9 10 | cantnfp1lem2 | ⊢ ( 𝜑 → dom 𝑂 = suc ∪ dom 𝑂 ) |
| 17 | 16 | fveq2d | ⊢ ( 𝜑 → ( 𝐻 ‘ dom 𝑂 ) = ( 𝐻 ‘ suc ∪ dom 𝑂 ) ) |
| 18 | 1 2 3 10 14 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
| 19 | 18 | simprd | ⊢ ( 𝜑 → dom 𝑂 ∈ ω ) |
| 20 | 16 19 | eqeltrrd | ⊢ ( 𝜑 → suc ∪ dom 𝑂 ∈ ω ) |
| 21 | peano2b | ⊢ ( ∪ dom 𝑂 ∈ ω ↔ suc ∪ dom 𝑂 ∈ ω ) | |
| 22 | 20 21 | sylibr | ⊢ ( 𝜑 → ∪ dom 𝑂 ∈ ω ) |
| 23 | 1 2 3 10 14 11 | cantnfsuc | ⊢ ( ( 𝜑 ∧ ∪ dom 𝑂 ∈ ω ) → ( 𝐻 ‘ suc ∪ dom 𝑂 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ ∪ dom 𝑂 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) +o ( 𝐻 ‘ ∪ dom 𝑂 ) ) ) |
| 24 | 22 23 | mpdan | ⊢ ( 𝜑 → ( 𝐻 ‘ suc ∪ dom 𝑂 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ ∪ dom 𝑂 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) +o ( 𝐻 ‘ ∪ dom 𝑂 ) ) ) |
| 25 | ovexd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) | |
| 26 | 18 | simpld | ⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 27 | 10 | oiiso | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐹 supp ∅ ) ) ) |
| 28 | 25 26 27 | syl2anc | ⊢ ( 𝜑 → 𝑂 Isom E , E ( dom 𝑂 , ( 𝐹 supp ∅ ) ) ) |
| 29 | isof1o | ⊢ ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐹 supp ∅ ) ) → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) ) | |
| 30 | 28 29 | syl | ⊢ ( 𝜑 → 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) ) |
| 31 | f1ocnv | ⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) → ◡ 𝑂 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝑂 ) | |
| 32 | f1of | ⊢ ( ◡ 𝑂 : ( 𝐹 supp ∅ ) –1-1-onto→ dom 𝑂 → ◡ 𝑂 : ( 𝐹 supp ∅ ) ⟶ dom 𝑂 ) | |
| 33 | 30 31 32 | 3syl | ⊢ ( 𝜑 → ◡ 𝑂 : ( 𝐹 supp ∅ ) ⟶ dom 𝑂 ) |
| 34 | iftrue | ⊢ ( 𝑡 = 𝑋 → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) = 𝑌 ) | |
| 35 | 8 34 5 6 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |
| 36 | 9 | ne0d | ⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
| 37 | 35 36 | eqnetrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) |
| 38 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → 𝑌 ∈ 𝐴 ) |
| 39 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 40 | 4 39 | mpbid | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 41 | 40 | simpld | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 42 | 41 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑡 ) ∈ 𝐴 ) |
| 43 | 38 42 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 44 | 43 8 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 45 | 44 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
| 46 | 0ex | ⊢ ∅ ∈ V | |
| 47 | 46 | a1i | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 48 | elsuppfn | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) ) | |
| 49 | 45 3 47 48 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) ) |
| 50 | 5 37 49 | mpbir2and | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 supp ∅ ) ) |
| 51 | 33 50 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) |
| 52 | elssuni | ⊢ ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) | |
| 53 | 51 52 | syl | ⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ) |
| 54 | 10 | oicl | ⊢ Ord dom 𝑂 |
| 55 | ordelon | ⊢ ( ( Ord dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) | |
| 56 | 54 51 55 | sylancr | ⊢ ( 𝜑 → ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ) |
| 57 | nnon | ⊢ ( ∪ dom 𝑂 ∈ ω → ∪ dom 𝑂 ∈ On ) | |
| 58 | 22 57 | syl | ⊢ ( 𝜑 → ∪ dom 𝑂 ∈ On ) |
| 59 | ontri1 | ⊢ ( ( ( ◡ 𝑂 ‘ 𝑋 ) ∈ On ∧ ∪ dom 𝑂 ∈ On ) → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) | |
| 60 | 56 58 59 | syl2anc | ⊢ ( 𝜑 → ( ( ◡ 𝑂 ‘ 𝑋 ) ⊆ ∪ dom 𝑂 ↔ ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 61 | 53 60 | mpbid | ⊢ ( 𝜑 → ¬ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 62 | sucidg | ⊢ ( ∪ dom 𝑂 ∈ ω → ∪ dom 𝑂 ∈ suc ∪ dom 𝑂 ) | |
| 63 | 22 62 | syl | ⊢ ( 𝜑 → ∪ dom 𝑂 ∈ suc ∪ dom 𝑂 ) |
| 64 | 63 16 | eleqtrrd | ⊢ ( 𝜑 → ∪ dom 𝑂 ∈ dom 𝑂 ) |
| 65 | isorel | ⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐹 supp ∅ ) ) ∧ ( ∪ dom 𝑂 ∈ dom 𝑂 ∧ ( ◡ 𝑂 ‘ 𝑋 ) ∈ dom 𝑂 ) ) → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) | |
| 66 | 28 64 51 65 | syl12anc | ⊢ ( 𝜑 → ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 67 | fvex | ⊢ ( ◡ 𝑂 ‘ 𝑋 ) ∈ V | |
| 68 | 67 | epeli | ⊢ ( ∪ dom 𝑂 E ( ◡ 𝑂 ‘ 𝑋 ) ↔ ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ) |
| 69 | fvex | ⊢ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ∈ V | |
| 70 | 69 | epeli | ⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) E ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) |
| 71 | 66 68 70 | 3bitr3g | ⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ) ) |
| 72 | f1ocnvfv2 | ⊢ ( ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) ∧ 𝑋 ∈ ( 𝐹 supp ∅ ) ) → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) | |
| 73 | 30 50 72 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) = 𝑋 ) |
| 74 | 73 | eleq2d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝑂 ‘ ( ◡ 𝑂 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
| 75 | 71 74 | bitrd | ⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ ( ◡ 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
| 76 | 61 75 | mtbid | ⊢ ( 𝜑 → ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) |
| 77 | 7 | sseld | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ) ) |
| 78 | suppssdm | ⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 | |
| 79 | 78 44 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐵 ) |
| 80 | onss | ⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) | |
| 81 | 3 80 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ On ) |
| 82 | 79 81 | sstrd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
| 83 | 10 | oif | ⊢ 𝑂 : dom 𝑂 ⟶ ( 𝐹 supp ∅ ) |
| 84 | 83 | ffvelcdmi | ⊢ ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐹 supp ∅ ) ) |
| 85 | 64 84 | syl | ⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐹 supp ∅ ) ) |
| 86 | 82 85 | sseldd | ⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On ) |
| 87 | eloni | ⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ On → Ord ( 𝑂 ‘ ∪ dom 𝑂 ) ) | |
| 88 | 86 87 | syl | ⊢ ( 𝜑 → Ord ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
| 89 | ordn2lp | ⊢ ( Ord ( 𝑂 ‘ ∪ dom 𝑂 ) → ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∧ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) | |
| 90 | 88 89 | syl | ⊢ ( 𝜑 → ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∧ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
| 91 | imnan | ⊢ ( ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 → ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ↔ ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∧ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) | |
| 92 | 90 91 | sylibr | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 → ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
| 93 | 77 92 | syld | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) → ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
| 94 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ On ) | |
| 95 | 3 5 94 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ On ) |
| 96 | eloni | ⊢ ( 𝑋 ∈ On → Ord 𝑋 ) | |
| 97 | 95 96 | syl | ⊢ ( 𝜑 → Ord 𝑋 ) |
| 98 | ordirr | ⊢ ( Ord 𝑋 → ¬ 𝑋 ∈ 𝑋 ) | |
| 99 | 97 98 | syl | ⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑋 ) |
| 100 | elsni | ⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } → ( 𝑂 ‘ ∪ dom 𝑂 ) = 𝑋 ) | |
| 101 | 100 | eleq2d | ⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } → ( 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ 𝑋 ∈ 𝑋 ) ) |
| 102 | 101 | notbid | ⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } → ( ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ↔ ¬ 𝑋 ∈ 𝑋 ) ) |
| 103 | 99 102 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } → ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
| 104 | eqeq1 | ⊢ ( 𝑡 = 𝑘 → ( 𝑡 = 𝑋 ↔ 𝑘 = 𝑋 ) ) | |
| 105 | fveq2 | ⊢ ( 𝑡 = 𝑘 → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 106 | 104 105 | ifbieq2d | ⊢ ( 𝑡 = 𝑘 → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) = if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ) |
| 107 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) → 𝑘 ∈ 𝐵 ) | |
| 108 | 107 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → 𝑘 ∈ 𝐵 ) |
| 109 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → 𝑌 ∈ 𝐴 ) |
| 110 | fvex | ⊢ ( 𝐺 ‘ 𝑘 ) ∈ V | |
| 111 | ifexg | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑘 ) ∈ V ) → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ∈ V ) | |
| 112 | 109 110 111 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ∈ V ) |
| 113 | 8 106 108 112 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ) |
| 114 | eldifn | ⊢ ( 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) → ¬ 𝑘 ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) | |
| 115 | 114 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → ¬ 𝑘 ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) |
| 116 | velsn | ⊢ ( 𝑘 ∈ { 𝑋 } ↔ 𝑘 = 𝑋 ) | |
| 117 | elun2 | ⊢ ( 𝑘 ∈ { 𝑋 } → 𝑘 ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) | |
| 118 | 116 117 | sylbir | ⊢ ( 𝑘 = 𝑋 → 𝑘 ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) |
| 119 | 115 118 | nsyl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → ¬ 𝑘 = 𝑋 ) |
| 120 | 119 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 121 | ssun1 | ⊢ ( 𝐺 supp ∅ ) ⊆ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) | |
| 122 | sscon | ⊢ ( ( 𝐺 supp ∅ ) ⊆ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) → ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ⊆ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) | |
| 123 | 121 122 | ax-mp | ⊢ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ⊆ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) |
| 124 | 123 | sseli | ⊢ ( 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) → 𝑘 ∈ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) |
| 125 | ssidd | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ ( 𝐺 supp ∅ ) ) | |
| 126 | 41 125 3 9 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐺 supp ∅ ) ) ) → ( 𝐺 ‘ 𝑘 ) = ∅ ) |
| 127 | 124 126 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → ( 𝐺 ‘ 𝑘 ) = ∅ ) |
| 128 | 113 120 127 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) ) → ( 𝐹 ‘ 𝑘 ) = ∅ ) |
| 129 | 44 128 | suppss | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) |
| 130 | 129 85 | sseldd | ⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ) |
| 131 | elun | ⊢ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) ↔ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) ∨ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } ) ) | |
| 132 | 130 131 | sylib | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ ( 𝐺 supp ∅ ) ∨ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ { 𝑋 } ) ) |
| 133 | 93 103 132 | mpjaod | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) |
| 134 | ioran | ⊢ ( ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∨ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ↔ ( ¬ ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∧ ¬ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) | |
| 135 | 76 133 134 | sylanbrc | ⊢ ( 𝜑 → ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∨ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) |
| 136 | ordtri3 | ⊢ ( ( Ord ( 𝑂 ‘ ∪ dom 𝑂 ) ∧ Ord 𝑋 ) → ( ( 𝑂 ‘ ∪ dom 𝑂 ) = 𝑋 ↔ ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∨ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) ) | |
| 137 | 88 97 136 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ dom 𝑂 ) = 𝑋 ↔ ¬ ( ( 𝑂 ‘ ∪ dom 𝑂 ) ∈ 𝑋 ∨ 𝑋 ∈ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) ) |
| 138 | 135 137 | mpbird | ⊢ ( 𝜑 → ( 𝑂 ‘ ∪ dom 𝑂 ) = 𝑋 ) |
| 139 | 138 | oveq2d | ⊢ ( 𝜑 → ( 𝐴 ↑o ( 𝑂 ‘ ∪ dom 𝑂 ) ) = ( 𝐴 ↑o 𝑋 ) ) |
| 140 | 138 | fveq2d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 141 | 140 35 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) = 𝑌 ) |
| 142 | 139 141 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐴 ↑o ( 𝑂 ‘ ∪ dom 𝑂 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) = ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ) |
| 143 | nnord | ⊢ ( ∪ dom 𝑂 ∈ ω → Ord ∪ dom 𝑂 ) | |
| 144 | 22 143 | syl | ⊢ ( 𝜑 → Ord ∪ dom 𝑂 ) |
| 145 | sssucid | ⊢ ∪ dom 𝑂 ⊆ suc ∪ dom 𝑂 | |
| 146 | 145 16 | sseqtrrid | ⊢ ( 𝜑 → ∪ dom 𝑂 ⊆ dom 𝑂 ) |
| 147 | f1ofo | ⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) → 𝑂 : dom 𝑂 –onto→ ( 𝐹 supp ∅ ) ) | |
| 148 | 30 147 | syl | ⊢ ( 𝜑 → 𝑂 : dom 𝑂 –onto→ ( 𝐹 supp ∅ ) ) |
| 149 | foima | ⊢ ( 𝑂 : dom 𝑂 –onto→ ( 𝐹 supp ∅ ) → ( 𝑂 “ dom 𝑂 ) = ( 𝐹 supp ∅ ) ) | |
| 150 | 148 149 | syl | ⊢ ( 𝜑 → ( 𝑂 “ dom 𝑂 ) = ( 𝐹 supp ∅ ) ) |
| 151 | ffn | ⊢ ( 𝑂 : dom 𝑂 ⟶ ( 𝐹 supp ∅ ) → 𝑂 Fn dom 𝑂 ) | |
| 152 | 83 151 | ax-mp | ⊢ 𝑂 Fn dom 𝑂 |
| 153 | fnsnfv | ⊢ ( ( 𝑂 Fn dom 𝑂 ∧ ∪ dom 𝑂 ∈ dom 𝑂 ) → { ( 𝑂 ‘ ∪ dom 𝑂 ) } = ( 𝑂 “ { ∪ dom 𝑂 } ) ) | |
| 154 | 152 64 153 | sylancr | ⊢ ( 𝜑 → { ( 𝑂 ‘ ∪ dom 𝑂 ) } = ( 𝑂 “ { ∪ dom 𝑂 } ) ) |
| 155 | 138 | sneqd | ⊢ ( 𝜑 → { ( 𝑂 ‘ ∪ dom 𝑂 ) } = { 𝑋 } ) |
| 156 | 154 155 | eqtr3d | ⊢ ( 𝜑 → ( 𝑂 “ { ∪ dom 𝑂 } ) = { 𝑋 } ) |
| 157 | 150 156 | difeq12d | ⊢ ( 𝜑 → ( ( 𝑂 “ dom 𝑂 ) ∖ ( 𝑂 “ { ∪ dom 𝑂 } ) ) = ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ) |
| 158 | ordirr | ⊢ ( Ord ∪ dom 𝑂 → ¬ ∪ dom 𝑂 ∈ ∪ dom 𝑂 ) | |
| 159 | 144 158 | syl | ⊢ ( 𝜑 → ¬ ∪ dom 𝑂 ∈ ∪ dom 𝑂 ) |
| 160 | disjsn | ⊢ ( ( ∪ dom 𝑂 ∩ { ∪ dom 𝑂 } ) = ∅ ↔ ¬ ∪ dom 𝑂 ∈ ∪ dom 𝑂 ) | |
| 161 | 159 160 | sylibr | ⊢ ( 𝜑 → ( ∪ dom 𝑂 ∩ { ∪ dom 𝑂 } ) = ∅ ) |
| 162 | disj3 | ⊢ ( ( ∪ dom 𝑂 ∩ { ∪ dom 𝑂 } ) = ∅ ↔ ∪ dom 𝑂 = ( ∪ dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) | |
| 163 | 161 162 | sylib | ⊢ ( 𝜑 → ∪ dom 𝑂 = ( ∪ dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) |
| 164 | difun2 | ⊢ ( ( ∪ dom 𝑂 ∪ { ∪ dom 𝑂 } ) ∖ { ∪ dom 𝑂 } ) = ( ∪ dom 𝑂 ∖ { ∪ dom 𝑂 } ) | |
| 165 | 163 164 | eqtr4di | ⊢ ( 𝜑 → ∪ dom 𝑂 = ( ( ∪ dom 𝑂 ∪ { ∪ dom 𝑂 } ) ∖ { ∪ dom 𝑂 } ) ) |
| 166 | df-suc | ⊢ suc ∪ dom 𝑂 = ( ∪ dom 𝑂 ∪ { ∪ dom 𝑂 } ) | |
| 167 | 16 166 | eqtrdi | ⊢ ( 𝜑 → dom 𝑂 = ( ∪ dom 𝑂 ∪ { ∪ dom 𝑂 } ) ) |
| 168 | 167 | difeq1d | ⊢ ( 𝜑 → ( dom 𝑂 ∖ { ∪ dom 𝑂 } ) = ( ( ∪ dom 𝑂 ∪ { ∪ dom 𝑂 } ) ∖ { ∪ dom 𝑂 } ) ) |
| 169 | 165 168 | eqtr4d | ⊢ ( 𝜑 → ∪ dom 𝑂 = ( dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) |
| 170 | 169 | imaeq2d | ⊢ ( 𝜑 → ( 𝑂 “ ∪ dom 𝑂 ) = ( 𝑂 “ ( dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) ) |
| 171 | dff1o3 | ⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) ↔ ( 𝑂 : dom 𝑂 –onto→ ( 𝐹 supp ∅ ) ∧ Fun ◡ 𝑂 ) ) | |
| 172 | 171 | simprbi | ⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ( 𝐹 supp ∅ ) → Fun ◡ 𝑂 ) |
| 173 | imadif | ⊢ ( Fun ◡ 𝑂 → ( 𝑂 “ ( dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) = ( ( 𝑂 “ dom 𝑂 ) ∖ ( 𝑂 “ { ∪ dom 𝑂 } ) ) ) | |
| 174 | 30 172 173 | 3syl | ⊢ ( 𝜑 → ( 𝑂 “ ( dom 𝑂 ∖ { ∪ dom 𝑂 } ) ) = ( ( 𝑂 “ dom 𝑂 ) ∖ ( 𝑂 “ { ∪ dom 𝑂 } ) ) ) |
| 175 | 170 174 | eqtrd | ⊢ ( 𝜑 → ( 𝑂 “ ∪ dom 𝑂 ) = ( ( 𝑂 “ dom 𝑂 ) ∖ ( 𝑂 “ { ∪ dom 𝑂 } ) ) ) |
| 176 | 7 99 | ssneldd | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
| 177 | disjsn | ⊢ ( ( ( 𝐺 supp ∅ ) ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ ( 𝐺 supp ∅ ) ) | |
| 178 | 176 177 | sylibr | ⊢ ( 𝜑 → ( ( 𝐺 supp ∅ ) ∩ { 𝑋 } ) = ∅ ) |
| 179 | fvex | ⊢ ( 𝐺 ‘ 𝑋 ) ∈ V | |
| 180 | dif1o | ⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ↔ ( ( 𝐺 ‘ 𝑋 ) ∈ V ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) | |
| 181 | 179 180 | mpbiran | ⊢ ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ↔ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) |
| 182 | 41 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
| 183 | elsuppfn | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) | |
| 184 | 182 3 47 183 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) ) |
| 185 | 181 | a1i | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ↔ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ) |
| 186 | 185 | bicomd | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ ↔ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) |
| 187 | 186 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) ) |
| 188 | 184 187 | bitrd | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) ) ) |
| 189 | 7 | sseld | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐺 supp ∅ ) → 𝑋 ∈ 𝑋 ) ) |
| 190 | 188 189 | sylbird | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) ) → 𝑋 ∈ 𝑋 ) ) |
| 191 | 5 190 | mpand | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ∈ ( V ∖ 1o ) → 𝑋 ∈ 𝑋 ) ) |
| 192 | 181 191 | biimtrrid | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ 𝑋 ) ) |
| 193 | 192 | necon1bd | ⊢ ( 𝜑 → ( ¬ 𝑋 ∈ 𝑋 → ( 𝐺 ‘ 𝑋 ) = ∅ ) ) |
| 194 | 99 193 | mpd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ∅ ) |
| 195 | 194 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐺 ‘ 𝑋 ) = ∅ ) |
| 196 | fveqeq2 | ⊢ ( 𝑘 = 𝑋 → ( ( 𝐺 ‘ 𝑘 ) = ∅ ↔ ( 𝐺 ‘ 𝑋 ) = ∅ ) ) | |
| 197 | 195 196 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝑘 = 𝑋 → ( 𝐺 ‘ 𝑘 ) = ∅ ) ) |
| 198 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) → 𝑘 ∈ 𝐵 ) | |
| 199 | 198 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → 𝑘 ∈ 𝐵 ) |
| 200 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → 𝑌 ∈ 𝐴 ) |
| 201 | 200 110 111 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ∈ V ) |
| 202 | 8 106 199 201 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) ) |
| 203 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) | |
| 204 | 44 203 3 9 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐹 ‘ 𝑘 ) = ∅ ) |
| 205 | 202 204 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) = ∅ ) |
| 206 | iffalse | ⊢ ( ¬ 𝑘 = 𝑋 → if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 207 | 206 | eqeq1d | ⊢ ( ¬ 𝑘 = 𝑋 → ( if ( 𝑘 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑘 ) ) = ∅ ↔ ( 𝐺 ‘ 𝑘 ) = ∅ ) ) |
| 208 | 205 207 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( ¬ 𝑘 = 𝑋 → ( 𝐺 ‘ 𝑘 ) = ∅ ) ) |
| 209 | 197 208 | pm2.61d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐹 supp ∅ ) ) ) → ( 𝐺 ‘ 𝑘 ) = ∅ ) |
| 210 | 41 209 | suppss | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ ( 𝐹 supp ∅ ) ) |
| 211 | reldisj | ⊢ ( ( 𝐺 supp ∅ ) ⊆ ( 𝐹 supp ∅ ) → ( ( ( 𝐺 supp ∅ ) ∩ { 𝑋 } ) = ∅ ↔ ( 𝐺 supp ∅ ) ⊆ ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ) ) | |
| 212 | 210 211 | syl | ⊢ ( 𝜑 → ( ( ( 𝐺 supp ∅ ) ∩ { 𝑋 } ) = ∅ ↔ ( 𝐺 supp ∅ ) ⊆ ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ) ) |
| 213 | 178 212 | mpbid | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ) |
| 214 | uncom | ⊢ ( ( 𝐺 supp ∅ ) ∪ { 𝑋 } ) = ( { 𝑋 } ∪ ( 𝐺 supp ∅ ) ) | |
| 215 | 129 214 | sseqtrdi | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ ( { 𝑋 } ∪ ( 𝐺 supp ∅ ) ) ) |
| 216 | ssundif | ⊢ ( ( 𝐹 supp ∅ ) ⊆ ( { 𝑋 } ∪ ( 𝐺 supp ∅ ) ) ↔ ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ⊆ ( 𝐺 supp ∅ ) ) | |
| 217 | 215 216 | sylib | ⊢ ( 𝜑 → ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ⊆ ( 𝐺 supp ∅ ) ) |
| 218 | 213 217 | eqssd | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) = ( ( 𝐹 supp ∅ ) ∖ { 𝑋 } ) ) |
| 219 | 157 175 218 | 3eqtr4rd | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) = ( 𝑂 “ ∪ dom 𝑂 ) ) |
| 220 | isores3 | ⊢ ( ( 𝑂 Isom E , E ( dom 𝑂 , ( 𝐹 supp ∅ ) ) ∧ ∪ dom 𝑂 ⊆ dom 𝑂 ∧ ( 𝐺 supp ∅ ) = ( 𝑂 “ ∪ dom 𝑂 ) ) → ( 𝑂 ↾ ∪ dom 𝑂 ) Isom E , E ( ∪ dom 𝑂 , ( 𝐺 supp ∅ ) ) ) | |
| 221 | 28 146 219 220 | syl3anc | ⊢ ( 𝜑 → ( 𝑂 ↾ ∪ dom 𝑂 ) Isom E , E ( ∪ dom 𝑂 , ( 𝐺 supp ∅ ) ) ) |
| 222 | 1 2 3 12 4 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐺 supp ∅ ) ∧ dom 𝐾 ∈ ω ) ) |
| 223 | 222 | simpld | ⊢ ( 𝜑 → E We ( 𝐺 supp ∅ ) ) |
| 224 | epse | ⊢ E Se ( 𝐺 supp ∅ ) | |
| 225 | 12 | oieu | ⊢ ( ( E We ( 𝐺 supp ∅ ) ∧ E Se ( 𝐺 supp ∅ ) ) → ( ( Ord ∪ dom 𝑂 ∧ ( 𝑂 ↾ ∪ dom 𝑂 ) Isom E , E ( ∪ dom 𝑂 , ( 𝐺 supp ∅ ) ) ) ↔ ( ∪ dom 𝑂 = dom 𝐾 ∧ ( 𝑂 ↾ ∪ dom 𝑂 ) = 𝐾 ) ) ) |
| 226 | 223 224 225 | sylancl | ⊢ ( 𝜑 → ( ( Ord ∪ dom 𝑂 ∧ ( 𝑂 ↾ ∪ dom 𝑂 ) Isom E , E ( ∪ dom 𝑂 , ( 𝐺 supp ∅ ) ) ) ↔ ( ∪ dom 𝑂 = dom 𝐾 ∧ ( 𝑂 ↾ ∪ dom 𝑂 ) = 𝐾 ) ) ) |
| 227 | 144 221 226 | mpbi2and | ⊢ ( 𝜑 → ( ∪ dom 𝑂 = dom 𝐾 ∧ ( 𝑂 ↾ ∪ dom 𝑂 ) = 𝐾 ) ) |
| 228 | 227 | simpld | ⊢ ( 𝜑 → ∪ dom 𝑂 = dom 𝐾 ) |
| 229 | 228 | fveq2d | ⊢ ( 𝜑 → ( 𝑀 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ dom 𝐾 ) ) |
| 230 | eleq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂 ) ) | |
| 231 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ ∅ ) ) | |
| 232 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ ∅ ) ) | |
| 233 | 13 | seqom0g | ⊢ ( ∅ ∈ V → ( 𝑀 ‘ ∅ ) = ∅ ) |
| 234 | 46 233 | ax-mp | ⊢ ( 𝑀 ‘ ∅ ) = ∅ |
| 235 | 232 234 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝑀 ‘ 𝑥 ) = ∅ ) |
| 236 | 231 235 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ↔ ( 𝐻 ‘ ∅ ) = ∅ ) ) |
| 237 | 230 236 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ↔ ( ∅ ∈ dom 𝑂 → ( 𝐻 ‘ ∅ ) = ∅ ) ) ) |
| 238 | 237 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ∅ ∈ dom 𝑂 → ( 𝐻 ‘ ∅ ) = ∅ ) ) ) ) |
| 239 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ dom 𝑂 ↔ 𝑦 ∈ dom 𝑂 ) ) | |
| 240 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑦 ) ) | |
| 241 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑦 ) ) | |
| 242 | 240 241 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ↔ ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) |
| 243 | 239 242 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ↔ ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 244 | 243 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) ) ) |
| 245 | eleq1 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ dom 𝑂 ↔ suc 𝑦 ∈ dom 𝑂 ) ) | |
| 246 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ suc 𝑦 ) ) | |
| 247 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ suc 𝑦 ) ) | |
| 248 | 246 247 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ↔ ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) |
| 249 | 245 248 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ↔ ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) |
| 250 | 249 | imbi2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝜑 → ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) ) |
| 251 | eleq1 | ⊢ ( 𝑥 = ∪ dom 𝑂 → ( 𝑥 ∈ dom 𝑂 ↔ ∪ dom 𝑂 ∈ dom 𝑂 ) ) | |
| 252 | fveq2 | ⊢ ( 𝑥 = ∪ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ ∪ dom 𝑂 ) ) | |
| 253 | fveq2 | ⊢ ( 𝑥 = ∪ dom 𝑂 → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) | |
| 254 | 252 253 | eqeq12d | ⊢ ( 𝑥 = ∪ dom 𝑂 → ( ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ↔ ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) ) |
| 255 | 251 254 | imbi12d | ⊢ ( 𝑥 = ∪ dom 𝑂 → ( ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ↔ ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) ) ) |
| 256 | 255 | imbi2d | ⊢ ( 𝑥 = ∪ dom 𝑂 → ( ( 𝜑 → ( 𝑥 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) ) ) ) |
| 257 | 11 | seqom0g | ⊢ ( ∅ ∈ dom 𝑂 → ( 𝐻 ‘ ∅ ) = ∅ ) |
| 258 | 257 | a1i | ⊢ ( 𝜑 → ( ∅ ∈ dom 𝑂 → ( 𝐻 ‘ ∅ ) = ∅ ) ) |
| 259 | nnord | ⊢ ( dom 𝑂 ∈ ω → Ord dom 𝑂 ) | |
| 260 | 19 259 | syl | ⊢ ( 𝜑 → Ord dom 𝑂 ) |
| 261 | ordtr | ⊢ ( Ord dom 𝑂 → Tr dom 𝑂 ) | |
| 262 | 260 261 | syl | ⊢ ( 𝜑 → Tr dom 𝑂 ) |
| 263 | trsuc | ⊢ ( ( Tr dom 𝑂 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ dom 𝑂 ) | |
| 264 | 262 263 | sylan | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ dom 𝑂 ) |
| 265 | 264 | ex | ⊢ ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 → 𝑦 ∈ dom 𝑂 ) ) |
| 266 | 265 | imim1d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 267 | oveq2 | ⊢ ( ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) → ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) | |
| 268 | elnn | ⊢ ( ( 𝑦 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω ) → 𝑦 ∈ ω ) | |
| 269 | 268 | ancoms | ⊢ ( ( dom 𝑂 ∈ ω ∧ 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ ω ) |
| 270 | 19 264 269 | syl2an2r | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ ω ) |
| 271 | 1 2 3 10 14 11 | cantnfsuc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( 𝐻 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
| 272 | 270 271 | syldan | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐻 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) ) |
| 273 | 1 2 3 12 4 13 | cantnfsuc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( 𝑀 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑦 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) |
| 274 | 270 273 | syldan | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝑀 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑦 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) |
| 275 | 227 | simprd | ⊢ ( 𝜑 → ( 𝑂 ↾ ∪ dom 𝑂 ) = 𝐾 ) |
| 276 | 275 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑂 ↾ ∪ dom 𝑂 ) ‘ 𝑦 ) = ( 𝐾 ‘ 𝑦 ) ) |
| 277 | 276 | adantr | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( 𝑂 ↾ ∪ dom 𝑂 ) ‘ 𝑦 ) = ( 𝐾 ‘ 𝑦 ) ) |
| 278 | 16 | eleq2d | ⊢ ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 ↔ suc 𝑦 ∈ suc ∪ dom 𝑂 ) ) |
| 279 | 278 | biimpa | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → suc 𝑦 ∈ suc ∪ dom 𝑂 ) |
| 280 | 144 | adantr | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → Ord ∪ dom 𝑂 ) |
| 281 | ordsucelsuc | ⊢ ( Ord ∪ dom 𝑂 → ( 𝑦 ∈ ∪ dom 𝑂 ↔ suc 𝑦 ∈ suc ∪ dom 𝑂 ) ) | |
| 282 | 280 281 | syl | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝑦 ∈ ∪ dom 𝑂 ↔ suc 𝑦 ∈ suc ∪ dom 𝑂 ) ) |
| 283 | 279 282 | mpbird | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ ∪ dom 𝑂 ) |
| 284 | 283 | fvresd | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( 𝑂 ↾ ∪ dom 𝑂 ) ‘ 𝑦 ) = ( 𝑂 ‘ 𝑦 ) ) |
| 285 | 277 284 | eqtr3d | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐾 ‘ 𝑦 ) = ( 𝑂 ‘ 𝑦 ) ) |
| 286 | 285 | oveq2d | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐴 ↑o ( 𝐾 ‘ 𝑦 ) ) = ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ) |
| 287 | eqeq1 | ⊢ ( 𝑡 = ( 𝐾 ‘ 𝑦 ) → ( 𝑡 = 𝑋 ↔ ( 𝐾 ‘ 𝑦 ) = 𝑋 ) ) | |
| 288 | fveq2 | ⊢ ( 𝑡 = ( 𝐾 ‘ 𝑦 ) → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) | |
| 289 | 287 288 | ifbieq2d | ⊢ ( 𝑡 = ( 𝐾 ‘ 𝑦 ) → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) = if ( ( 𝐾 ‘ 𝑦 ) = 𝑋 , 𝑌 , ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) ) |
| 290 | suppssdm | ⊢ ( 𝐺 supp ∅ ) ⊆ dom 𝐺 | |
| 291 | 290 41 | fssdm | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
| 292 | 291 | adantr | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
| 293 | 228 | adantr | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ∪ dom 𝑂 = dom 𝐾 ) |
| 294 | 283 293 | eleqtrd | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑦 ∈ dom 𝐾 ) |
| 295 | 12 | oif | ⊢ 𝐾 : dom 𝐾 ⟶ ( 𝐺 supp ∅ ) |
| 296 | 295 | ffvelcdmi | ⊢ ( 𝑦 ∈ dom 𝐾 → ( 𝐾 ‘ 𝑦 ) ∈ ( 𝐺 supp ∅ ) ) |
| 297 | 294 296 | syl | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐾 ‘ 𝑦 ) ∈ ( 𝐺 supp ∅ ) ) |
| 298 | 292 297 | sseldd | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐾 ‘ 𝑦 ) ∈ 𝐵 ) |
| 299 | 6 | adantr | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → 𝑌 ∈ 𝐴 ) |
| 300 | fvex | ⊢ ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ∈ V | |
| 301 | ifexg | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ∈ V ) → if ( ( 𝐾 ‘ 𝑦 ) = 𝑋 , 𝑌 , ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) ∈ V ) | |
| 302 | 299 300 301 | sylancl | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → if ( ( 𝐾 ‘ 𝑦 ) = 𝑋 , 𝑌 , ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) ∈ V ) |
| 303 | 8 289 298 302 | fvmptd3 | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐹 ‘ ( 𝐾 ‘ 𝑦 ) ) = if ( ( 𝐾 ‘ 𝑦 ) = 𝑋 , 𝑌 , ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) ) |
| 304 | 285 | fveq2d | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐹 ‘ ( 𝐾 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) |
| 305 | 176 | adantr | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ¬ 𝑋 ∈ ( 𝐺 supp ∅ ) ) |
| 306 | nelneq | ⊢ ( ( ( 𝐾 ‘ 𝑦 ) ∈ ( 𝐺 supp ∅ ) ∧ ¬ 𝑋 ∈ ( 𝐺 supp ∅ ) ) → ¬ ( 𝐾 ‘ 𝑦 ) = 𝑋 ) | |
| 307 | 297 305 306 | syl2anc | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ¬ ( 𝐾 ‘ 𝑦 ) = 𝑋 ) |
| 308 | 307 | iffalsed | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → if ( ( 𝐾 ‘ 𝑦 ) = 𝑋 , 𝑌 , ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) |
| 309 | 303 304 308 | 3eqtr3rd | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) |
| 310 | 286 309 | oveq12d | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑦 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) = ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) ) |
| 311 | 310 | oveq1d | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( ( 𝐴 ↑o ( 𝐾 ‘ 𝑦 ) ) ·o ( 𝐺 ‘ ( 𝐾 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) |
| 312 | 274 311 | eqtrd | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( 𝑀 ‘ suc 𝑦 ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) |
| 313 | 272 312 | eqeq12d | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ↔ ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝐻 ‘ 𝑦 ) ) = ( ( ( 𝐴 ↑o ( 𝑂 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ 𝑦 ) ) ) +o ( 𝑀 ‘ 𝑦 ) ) ) ) |
| 314 | 267 313 | imbitrrid | ⊢ ( ( 𝜑 ∧ suc 𝑦 ∈ dom 𝑂 ) → ( ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) |
| 315 | 314 | ex | ⊢ ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 → ( ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) |
| 316 | 315 | a2d | ⊢ ( 𝜑 → ( ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) |
| 317 | 266 316 | syld | ⊢ ( 𝜑 → ( ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) |
| 318 | 317 | a2i | ⊢ ( ( 𝜑 → ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) → ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) |
| 319 | 318 | a1i | ⊢ ( 𝑦 ∈ ω → ( ( 𝜑 → ( 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) ) → ( 𝜑 → ( suc 𝑦 ∈ dom 𝑂 → ( 𝐻 ‘ suc 𝑦 ) = ( 𝑀 ‘ suc 𝑦 ) ) ) ) ) |
| 320 | 238 244 250 256 258 319 | finds | ⊢ ( ∪ dom 𝑂 ∈ ω → ( 𝜑 → ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) ) ) |
| 321 | 22 320 | mpcom | ⊢ ( 𝜑 → ( ∪ dom 𝑂 ∈ dom 𝑂 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) ) |
| 322 | 64 321 | mpd | ⊢ ( 𝜑 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( 𝑀 ‘ ∪ dom 𝑂 ) ) |
| 323 | 1 2 3 12 4 13 | cantnfval | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = ( 𝑀 ‘ dom 𝐾 ) ) |
| 324 | 229 322 323 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐻 ‘ ∪ dom 𝑂 ) = ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |
| 325 | 142 324 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑o ( 𝑂 ‘ ∪ dom 𝑂 ) ) ·o ( 𝐹 ‘ ( 𝑂 ‘ ∪ dom 𝑂 ) ) ) +o ( 𝐻 ‘ ∪ dom 𝑂 ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
| 326 | 24 325 | eqtrd | ⊢ ( 𝜑 → ( 𝐻 ‘ suc ∪ dom 𝑂 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
| 327 | 15 17 326 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |