This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imadif | ⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandir | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) | |
| 2 | 1 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 3 | 19.40 | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ∃ 𝑥 ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ∃ 𝑥 ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 5 | nfv | ⊢ Ⅎ 𝑥 Fun ◡ 𝐹 | |
| 6 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) | |
| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑥 ( Fun ◡ 𝐹 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 8 | funmo | ⊢ ( Fun ◡ 𝐹 → ∃* 𝑥 𝑦 ◡ 𝐹 𝑥 ) | |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | 9 10 | brcnv | ⊢ ( 𝑦 ◡ 𝐹 𝑥 ↔ 𝑥 𝐹 𝑦 ) |
| 12 | 11 | mobii | ⊢ ( ∃* 𝑥 𝑦 ◡ 𝐹 𝑥 ↔ ∃* 𝑥 𝑥 𝐹 𝑦 ) |
| 13 | 8 12 | sylib | ⊢ ( Fun ◡ 𝐹 → ∃* 𝑥 𝑥 𝐹 𝑦 ) |
| 14 | mopick | ⊢ ( ( ∃* 𝑥 𝑥 𝐹 𝑦 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 𝐹 𝑦 → ¬ 𝑥 ∈ 𝐵 ) ) | |
| 15 | 13 14 | sylan | ⊢ ( ( Fun ◡ 𝐹 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 𝐹 𝑦 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 16 | 15 | con2d | ⊢ ( ( Fun ◡ 𝐹 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐵 → ¬ 𝑥 𝐹 𝑦 ) ) |
| 17 | imnan | ⊢ ( ( 𝑥 ∈ 𝐵 → ¬ 𝑥 𝐹 𝑦 ) ↔ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) | |
| 18 | 16 17 | sylib | ⊢ ( ( Fun ◡ 𝐹 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
| 19 | 7 18 | alrimi | ⊢ ( ( Fun ◡ 𝐹 ∧ ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ) → ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
| 20 | 19 | ex | ⊢ ( Fun ◡ 𝐹 → ( ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 21 | exancom | ⊢ ( ∃ 𝑥 ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ∃ 𝑥 ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) | |
| 22 | alnex | ⊢ ( ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) | |
| 23 | 20 21 22 | 3imtr3g | ⊢ ( Fun ◡ 𝐹 → ( ∃ 𝑥 ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) → ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 24 | 23 | anim2d | ⊢ ( Fun ◡ 𝐹 → ( ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ∃ 𝑥 ( ¬ 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) ) |
| 25 | 4 24 | syl5 | ⊢ ( Fun ◡ 𝐹 → ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) ) |
| 26 | 19.29r | ⊢ ( ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ∀ 𝑥 ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) → ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) | |
| 27 | 22 26 | sylan2br | ⊢ ( ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) → ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 28 | andi | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 𝐹 𝑦 ) ) ↔ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 𝐹 𝑦 ) ) ) | |
| 29 | ianor | ⊢ ( ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ↔ ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 𝐹 𝑦 ) ) | |
| 30 | 29 | anbi2i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑥 𝐹 𝑦 ) ) ) |
| 31 | an32 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 32 | pm3.24 | ⊢ ¬ ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐹 𝑦 ) | |
| 33 | 32 | intnan | ⊢ ¬ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐹 𝑦 ) ) |
| 34 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 𝐹 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝐹 𝑦 ∧ ¬ 𝑥 𝐹 𝑦 ) ) ) | |
| 35 | 33 34 | mtbir | ⊢ ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 𝐹 𝑦 ) |
| 36 | 35 | biorfri | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 𝐹 𝑦 ) ) ) |
| 37 | 31 36 | bitri | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 ∈ 𝐵 ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ 𝑥 𝐹 𝑦 ) ) ) |
| 38 | 28 30 37 | 3bitr4i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
| 39 | 38 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
| 40 | 27 39 | sylib | ⊢ ( ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) → ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
| 41 | 25 40 | impbid1 | ⊢ ( Fun ◡ 𝐹 → ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) ) |
| 42 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 43 | 42 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
| 44 | 43 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
| 45 | 9 | elima2 | ⊢ ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) |
| 46 | 9 | elima2 | ⊢ ( 𝑦 ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
| 47 | 46 | notbii | ⊢ ( ¬ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ↔ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) |
| 48 | 45 47 | anbi12i | ⊢ ( ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ∧ ¬ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ∧ ¬ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 49 | 41 44 48 | 3bitr4g | ⊢ ( Fun ◡ 𝐹 → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ↔ ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ∧ ¬ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ) ) ) |
| 50 | 9 | elima2 | ⊢ ( 𝑦 ∈ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 𝐹 𝑦 ) ) |
| 51 | eldif | ⊢ ( 𝑦 ∈ ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) ↔ ( 𝑦 ∈ ( 𝐹 “ 𝐴 ) ∧ ¬ 𝑦 ∈ ( 𝐹 “ 𝐵 ) ) ) | |
| 52 | 49 50 51 | 3bitr4g | ⊢ ( Fun ◡ 𝐹 → ( 𝑦 ∈ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ↔ 𝑦 ∈ ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) ) ) |
| 53 | 52 | eqrdv | ⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) ) |