This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnfp1 . (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| cantnfp1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | ||
| cantnfp1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| cantnfp1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| cantnfp1.s | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) | ||
| cantnfp1.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) | ||
| cantnfp1.e | ⊢ ( 𝜑 → ∅ ∈ 𝑌 ) | ||
| cantnfp1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | ||
| Assertion | cantnfp1lem2 | ⊢ ( 𝜑 → dom 𝑂 = suc ∪ dom 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | cantnfp1.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | |
| 5 | cantnfp1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | cantnfp1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 7 | cantnfp1.s | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) | |
| 8 | cantnfp1.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) | |
| 9 | cantnfp1.e | ⊢ ( 𝜑 → ∅ ∈ 𝑌 ) | |
| 10 | cantnfp1.o | ⊢ 𝑂 = OrdIso ( E , ( 𝐹 supp ∅ ) ) | |
| 11 | iftrue | ⊢ ( 𝑡 = 𝑋 → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) = 𝑌 ) | |
| 12 | 8 11 5 6 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |
| 13 | 9 | ne0d | ⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
| 14 | 12 13 | eqnetrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) |
| 15 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → 𝑌 ∈ 𝐴 ) |
| 16 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 17 | 4 16 | mpbid | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 18 | 17 | simpld | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 19 | 18 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑡 ) ∈ 𝐴 ) |
| 20 | 15 19 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 21 | 20 8 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 22 | 21 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
| 23 | 9 | elexd | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 24 | elsuppfn | ⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝑋 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) ) | |
| 25 | 22 3 23 24 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp ∅ ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ≠ ∅ ) ) ) |
| 26 | 5 14 25 | mpbir2and | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 supp ∅ ) ) |
| 27 | n0i | ⊢ ( 𝑋 ∈ ( 𝐹 supp ∅ ) → ¬ ( 𝐹 supp ∅ ) = ∅ ) | |
| 28 | 26 27 | syl | ⊢ ( 𝜑 → ¬ ( 𝐹 supp ∅ ) = ∅ ) |
| 29 | ovexd | ⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) | |
| 30 | 1 2 3 4 5 6 7 8 | cantnfp1lem1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 31 | 1 2 3 10 30 | cantnfcl | ⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝑂 ∈ ω ) ) |
| 32 | 31 | simpld | ⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 33 | 10 | oien | ⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → dom 𝑂 ≈ ( 𝐹 supp ∅ ) ) |
| 34 | 29 32 33 | syl2anc | ⊢ ( 𝜑 → dom 𝑂 ≈ ( 𝐹 supp ∅ ) ) |
| 35 | breq1 | ⊢ ( dom 𝑂 = ∅ → ( dom 𝑂 ≈ ( 𝐹 supp ∅ ) ↔ ∅ ≈ ( 𝐹 supp ∅ ) ) ) | |
| 36 | ensymb | ⊢ ( ∅ ≈ ( 𝐹 supp ∅ ) ↔ ( 𝐹 supp ∅ ) ≈ ∅ ) | |
| 37 | en0 | ⊢ ( ( 𝐹 supp ∅ ) ≈ ∅ ↔ ( 𝐹 supp ∅ ) = ∅ ) | |
| 38 | 36 37 | bitri | ⊢ ( ∅ ≈ ( 𝐹 supp ∅ ) ↔ ( 𝐹 supp ∅ ) = ∅ ) |
| 39 | 35 38 | bitrdi | ⊢ ( dom 𝑂 = ∅ → ( dom 𝑂 ≈ ( 𝐹 supp ∅ ) ↔ ( 𝐹 supp ∅ ) = ∅ ) ) |
| 40 | 34 39 | syl5ibcom | ⊢ ( 𝜑 → ( dom 𝑂 = ∅ → ( 𝐹 supp ∅ ) = ∅ ) ) |
| 41 | 28 40 | mtod | ⊢ ( 𝜑 → ¬ dom 𝑂 = ∅ ) |
| 42 | 31 | simprd | ⊢ ( 𝜑 → dom 𝑂 ∈ ω ) |
| 43 | nnlim | ⊢ ( dom 𝑂 ∈ ω → ¬ Lim dom 𝑂 ) | |
| 44 | 42 43 | syl | ⊢ ( 𝜑 → ¬ Lim dom 𝑂 ) |
| 45 | ioran | ⊢ ( ¬ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ↔ ( ¬ dom 𝑂 = ∅ ∧ ¬ Lim dom 𝑂 ) ) | |
| 46 | 41 44 45 | sylanbrc | ⊢ ( 𝜑 → ¬ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) |
| 47 | nnord | ⊢ ( dom 𝑂 ∈ ω → Ord dom 𝑂 ) | |
| 48 | unizlim | ⊢ ( Ord dom 𝑂 → ( dom 𝑂 = ∪ dom 𝑂 ↔ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) ) | |
| 49 | 42 47 48 | 3syl | ⊢ ( 𝜑 → ( dom 𝑂 = ∪ dom 𝑂 ↔ ( dom 𝑂 = ∅ ∨ Lim dom 𝑂 ) ) ) |
| 50 | 46 49 | mtbird | ⊢ ( 𝜑 → ¬ dom 𝑂 = ∪ dom 𝑂 ) |
| 51 | orduniorsuc | ⊢ ( Ord dom 𝑂 → ( dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂 ) ) | |
| 52 | 42 47 51 | 3syl | ⊢ ( 𝜑 → ( dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂 ) ) |
| 53 | 52 | ord | ⊢ ( 𝜑 → ( ¬ dom 𝑂 = ∪ dom 𝑂 → dom 𝑂 = suc ∪ dom 𝑂 ) ) |
| 54 | 50 53 | mpd | ⊢ ( 𝜑 → dom 𝑂 = suc ∪ dom 𝑂 ) |