This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epse | ⊢ E Se 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel | ⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) | |
| 2 | 1 | bicomi | ⊢ ( 𝑦 ∈ 𝑥 ↔ 𝑦 E 𝑥 ) |
| 3 | 2 | eqabi | ⊢ 𝑥 = { 𝑦 ∣ 𝑦 E 𝑥 } |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 3 4 | eqeltrri | ⊢ { 𝑦 ∣ 𝑦 E 𝑥 } ∈ V |
| 6 | rabssab | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥 } ⊆ { 𝑦 ∣ 𝑦 E 𝑥 } | |
| 7 | 5 6 | ssexi | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥 } ∈ V |
| 8 | 7 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥 } ∈ V |
| 9 | df-se | ⊢ ( E Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥 } ∈ V ) | |
| 10 | 8 9 | mpbir | ⊢ E Se 𝐴 |