This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that two classes are disjoint, using the complement of B relative to a universe C . (Contributed by NM, 15-Feb-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid ax-12 . (Revised by GG, 28-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldisj | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | ⊢ ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) | |
| 2 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 3 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶 ) ) | |
| 4 | 2 3 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐶 ) ) ) |
| 5 | 4 | spw | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
| 6 | pm5.44 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) ) | |
| 7 | eldif | ⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 8 | 7 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 9 | 6 8 | bitr4di | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) ) |
| 10 | 5 9 | syl | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) ) |
| 11 | 1 10 | sylbi | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) ) |
| 12 | 11 | albidv | ⊢ ( 𝐴 ⊆ 𝐶 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) ) |
| 13 | disj1 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) | |
| 14 | df-ss | ⊢ ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) | |
| 15 | 12 13 14 | 3bitr4g | ⊢ ( 𝐴 ⊆ 𝐶 → ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ) ) |