This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| Assertion | oieu | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ↔ ( 𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| 2 | simprr | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) | |
| 3 | 1 | ordtype | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
| 5 | isocnv | ⊢ ( 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) → ◡ 𝐹 Isom 𝑅 , E ( 𝐴 , dom 𝐹 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → ◡ 𝐹 Isom 𝑅 , E ( 𝐴 , dom 𝐹 ) ) |
| 7 | isotr | ⊢ ( ( 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ∧ ◡ 𝐹 Isom 𝑅 , E ( 𝐴 , dom 𝐹 ) ) → ( ◡ 𝐹 ∘ 𝐺 ) Isom E , E ( 𝐵 , dom 𝐹 ) ) | |
| 8 | 2 6 7 | syl2anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → ( ◡ 𝐹 ∘ 𝐺 ) Isom E , E ( 𝐵 , dom 𝐹 ) ) |
| 9 | simprl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → Ord 𝐵 ) | |
| 10 | 1 | oicl | ⊢ Ord dom 𝐹 |
| 11 | 10 | a1i | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → Ord dom 𝐹 ) |
| 12 | ordiso2 | ⊢ ( ( ( ◡ 𝐹 ∘ 𝐺 ) Isom E , E ( 𝐵 , dom 𝐹 ) ∧ Ord 𝐵 ∧ Ord dom 𝐹 ) → 𝐵 = dom 𝐹 ) | |
| 13 | 8 9 11 12 | syl3anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → 𝐵 = dom 𝐹 ) |
| 14 | ordwe | ⊢ ( Ord 𝐵 → E We 𝐵 ) | |
| 15 | 14 | ad2antrl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → E We 𝐵 ) |
| 16 | epse | ⊢ E Se 𝐵 | |
| 17 | 16 | a1i | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → E Se 𝐵 ) |
| 18 | isoeq4 | ⊢ ( 𝐵 = dom 𝐹 → ( 𝐹 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ↔ 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) ) | |
| 19 | 13 18 | syl | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → ( 𝐹 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ↔ 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) ) |
| 20 | 4 19 | mpbird | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → 𝐹 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) |
| 21 | weisoeq | ⊢ ( ( ( E We 𝐵 ∧ E Se 𝐵 ) ∧ ( 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ∧ 𝐹 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → 𝐺 = 𝐹 ) | |
| 22 | 15 17 2 20 21 | syl22anc | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → 𝐺 = 𝐹 ) |
| 23 | 13 22 | jca | ⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) → ( 𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹 ) ) |
| 24 | 23 | ex | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) → ( 𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹 ) ) ) |
| 25 | 3 10 | jctil | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( Ord dom 𝐹 ∧ 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) ) |
| 26 | ordeq | ⊢ ( 𝐵 = dom 𝐹 → ( Ord 𝐵 ↔ Ord dom 𝐹 ) ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹 ) → ( Ord 𝐵 ↔ Ord dom 𝐹 ) ) |
| 28 | isoeq4 | ⊢ ( 𝐵 = dom 𝐹 → ( 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ↔ 𝐺 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) ) | |
| 29 | isoeq1 | ⊢ ( 𝐺 = 𝐹 → ( 𝐺 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ↔ 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) ) | |
| 30 | 28 29 | sylan9bb | ⊢ ( ( 𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹 ) → ( 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ↔ 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) ) |
| 31 | 27 30 | anbi12d | ⊢ ( ( 𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹 ) → ( ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ↔ ( Ord dom 𝐹 ∧ 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) ) ) |
| 32 | 25 31 | syl5ibrcom | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( 𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹 ) → ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ) ) |
| 33 | 24 32 | impbid | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( ( Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 ( 𝐵 , 𝐴 ) ) ↔ ( 𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹 ) ) ) |