This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disj3 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ 𝐴 = ( 𝐴 ∖ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) | |
| 2 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 3 | 2 | bibi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 4 | 1 3 | bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
| 6 | disj1 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) | |
| 7 | dfcleq | ⊢ ( 𝐴 = ( 𝐴 ∖ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ 𝐴 = ( 𝐴 ∖ 𝐵 ) ) |