This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trichotomy law for ordinals. (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof shortened by JJ, 24-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtri3 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr | ⊢ ( Ord 𝐵 → ¬ 𝐵 ∈ 𝐵 ) | |
| 2 | 1 | adantl | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ¬ 𝐵 ∈ 𝐵 ) |
| 3 | eleq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵 ) ) | |
| 4 | 3 | notbid | ⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐵 ) ) |
| 5 | 2 4 | syl5ibrcom | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴 ) ) |
| 6 | 5 | pm4.71d | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴 ) ) ) |
| 7 | pm5.61 | ⊢ ( ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∧ ¬ 𝐵 ∈ 𝐴 ) ↔ ( 𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 8 | pm4.52 | ⊢ ( ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∧ ¬ 𝐵 ∈ 𝐴 ) ↔ ¬ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∨ 𝐵 ∈ 𝐴 ) ) | |
| 9 | 7 8 | bitr3i | ⊢ ( ( 𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴 ) ↔ ¬ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∨ 𝐵 ∈ 𝐴 ) ) |
| 10 | 6 9 | bitrdi | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ¬ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 11 | ordtri2 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) | |
| 12 | 11 | orbi1d | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 13 | 12 | notbid | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ¬ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 14 | 10 13 | bitr4d | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |