This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of BellMachover p. 469. (Contributed by NM, 3-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordn2lp | ⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordirr | ⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) | |
| 2 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
| 3 | trel | ⊢ ( Tr 𝐴 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ∈ 𝐴 ) ) | |
| 4 | 2 3 | syl | ⊢ ( Ord 𝐴 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ∈ 𝐴 ) ) |
| 5 | 1 4 | mtod | ⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ) |