This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an index-aware recursive definition at 0. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by AV, 17-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqom.a | ⊢ 𝐺 = seqω ( 𝐹 , 𝐼 ) | |
| Assertion | seqom0g | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐺 ‘ ∅ ) = 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqom.a | ⊢ 𝐺 = seqω ( 𝐹 , 𝐼 ) | |
| 2 | df-seqom | ⊢ seqω ( 𝐹 , 𝐼 ) = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) | |
| 3 | 1 2 | eqtri | ⊢ 𝐺 = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) |
| 4 | 3 | fveq1i | ⊢ ( 𝐺 ‘ ∅ ) = ( ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) ‘ ∅ ) |
| 5 | seqomlem0 | ⊢ rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) = rec ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ 〈 suc 𝑐 , ( 𝑐 𝐹 𝑑 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) | |
| 6 | 5 | seqomlem3 | ⊢ ( ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) ‘ ∅ ) = ( I ‘ 𝐼 ) |
| 7 | 4 6 | eqtri | ⊢ ( 𝐺 ‘ ∅ ) = ( I ‘ 𝐼 ) |
| 8 | fvi | ⊢ ( 𝐼 ∈ 𝑉 → ( I ‘ 𝐼 ) = 𝐼 ) | |
| 9 | 7 8 | eqtrid | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐺 ‘ ∅ ) = 𝐼 ) |