This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership is inherited by successors. Generalization of Exercise 9 of TakeutiZaring p. 42. (Contributed by NM, 22-Jun-1998) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsucelsuc | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → Ord 𝐵 ) | |
| 2 | ordelord | ⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → Ord 𝐴 ) | |
| 3 | 1 2 | jca | ⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( Ord 𝐵 ∧ Ord 𝐴 ) ) |
| 4 | simpl | ⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord 𝐵 ) | |
| 5 | ordsuc | ⊢ ( Ord 𝐵 ↔ Ord suc 𝐵 ) | |
| 6 | ordelord | ⊢ ( ( Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord suc 𝐴 ) | |
| 7 | ordsuc | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( Ord suc 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord 𝐴 ) |
| 9 | 5 8 | sylanb | ⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → Ord 𝐴 ) |
| 10 | 4 9 | jca | ⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ suc 𝐵 ) → ( Ord 𝐵 ∧ Ord 𝐴 ) ) |
| 11 | ordsseleq | ⊢ ( ( Ord suc 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) | |
| 12 | 7 11 | sylanb | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
| 13 | 12 | ancoms | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( suc 𝐴 ⊆ 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
| 15 | ordsucss | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) | |
| 16 | 15 | ad2antrl | ⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| 17 | sucssel | ⊢ ( 𝐴 ∈ V → ( suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵 ) ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵 ) ) |
| 19 | 16 18 | impbid | ⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵 ) ) |
| 20 | sucexb | ⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) | |
| 21 | elsucg | ⊢ ( suc 𝐴 ∈ V → ( suc 𝐴 ∈ suc 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) | |
| 22 | 20 21 | sylbi | ⊢ ( 𝐴 ∈ V → ( suc 𝐴 ∈ suc 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( suc 𝐴 ∈ suc 𝐵 ↔ ( suc 𝐴 ∈ 𝐵 ∨ suc 𝐴 = 𝐵 ) ) ) |
| 24 | 14 19 23 | 3bitr4d | ⊢ ( ( 𝐴 ∈ V ∧ ( Ord 𝐵 ∧ Ord 𝐴 ) ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) |
| 25 | 24 | ex | ⊢ ( 𝐴 ∈ V → ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) ) |
| 26 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
| 27 | elex | ⊢ ( suc 𝐴 ∈ suc 𝐵 → suc 𝐴 ∈ V ) | |
| 28 | 27 20 | sylibr | ⊢ ( suc 𝐴 ∈ suc 𝐵 → 𝐴 ∈ V ) |
| 29 | 26 28 | pm5.21ni | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) |
| 30 | 29 | a1d | ⊢ ( ¬ 𝐴 ∈ V → ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) ) |
| 31 | 25 30 | pm2.61i | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) |
| 32 | 3 10 31 | pm5.21nd | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 ↔ suc 𝐴 ∈ suc 𝐵 ) ) |