This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group is a topological group. (Contributed by Mario Carneiro, 2-Sep-2015) (Proof shortened by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | symgtgp.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| Assertion | symgtgp | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgtgp.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | 1 | symggrp | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 3 | eqid | ⊢ ( EndoFMnd ‘ 𝐴 ) = ( EndoFMnd ‘ 𝐴 ) | |
| 4 | 3 | efmndtmd | ⊢ ( 𝐴 ∈ 𝑉 → ( EndoFMnd ‘ 𝐴 ) ∈ TopMnd ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | 3 1 5 | symgsubmefmnd | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) ∈ ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) ) |
| 7 | 1 5 3 | symgressbas | ⊢ 𝐺 = ( ( EndoFMnd ‘ 𝐴 ) ↾s ( Base ‘ 𝐺 ) ) |
| 8 | 7 | submtmd | ⊢ ( ( ( EndoFMnd ‘ 𝐴 ) ∈ TopMnd ∧ ( Base ‘ 𝐺 ) ∈ ( SubMnd ‘ ( EndoFMnd ‘ 𝐴 ) ) ) → 𝐺 ∈ TopMnd ) |
| 9 | 4 6 8 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ TopMnd ) |
| 10 | eqid | ⊢ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) | |
| 11 | 1 5 | symgtopn | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) = ( TopOpen ‘ 𝐺 ) ) |
| 12 | distopon | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) | |
| 13 | 10 | pttoponconst | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ) |
| 14 | 12 13 | mpdan | ⊢ ( 𝐴 ∈ 𝑉 → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ) |
| 15 | 1 5 | elsymgbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 16 | f1of | ⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → 𝑥 : 𝐴 ⟶ 𝐴 ) | |
| 17 | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ↔ 𝑥 : 𝐴 ⟶ 𝐴 ) ) | |
| 18 | 17 | anidms | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ↔ 𝑥 : 𝐴 ⟶ 𝐴 ) ) |
| 19 | 16 18 | imbitrrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) ) |
| 20 | 15 19 | sylbid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) → 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) ) |
| 21 | 20 | ssrdv | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) ⊆ ( 𝐴 ↑m 𝐴 ) ) |
| 22 | resttopon | ⊢ ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ∧ ( Base ‘ 𝐺 ) ⊆ ( 𝐴 ↑m 𝐴 ) ) → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) | |
| 23 | 14 21 22 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 24 | 11 23 | eqeltrrd | ⊢ ( 𝐴 ∈ 𝑉 → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 25 | id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) | |
| 26 | distop | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) | |
| 27 | fconst6g | ⊢ ( 𝒫 𝐴 ∈ Top → ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top ) | |
| 28 | 26 27 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top ) |
| 29 | 15 | biimpa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) |
| 30 | f1ocnv | ⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) | |
| 31 | f1of | ⊢ ( ◡ 𝑥 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑥 : 𝐴 ⟶ 𝐴 ) | |
| 32 | 29 30 31 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ◡ 𝑥 : 𝐴 ⟶ 𝐴 ) |
| 33 | 32 | ffvelcdmda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝐴 ) |
| 34 | 33 | an32s | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝐴 ) |
| 35 | 34 | fmpttd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ) |
| 37 | cnveq | ⊢ ( 𝑥 = 𝑓 → ◡ 𝑥 = ◡ 𝑓 ) | |
| 38 | 37 | fveq1d | ⊢ ( 𝑥 = 𝑓 → ( ◡ 𝑥 ‘ 𝑦 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) |
| 39 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) | |
| 40 | fvex | ⊢ ( ◡ 𝑓 ‘ 𝑦 ) ∈ V | |
| 41 | 38 39 40 | fvmpt | ⊢ ( 𝑓 ∈ ( Base ‘ 𝐺 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) |
| 42 | 41 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) |
| 43 | 42 | eleq1d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 ↔ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) |
| 44 | eqid | ⊢ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) = ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) | |
| 45 | 44 | mptiniseg | ⊢ ( 𝑦 ∈ V → ( ◡ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) “ { 𝑦 } ) = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) |
| 46 | 45 | elv | ⊢ ( ◡ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) “ { 𝑦 } ) = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } |
| 47 | eqid | ⊢ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) | |
| 48 | 14 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ) |
| 49 | 21 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) ⊆ ( 𝐴 ↑m 𝐴 ) ) |
| 50 | toponuni | ⊢ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) → ( 𝐴 ↑m 𝐴 ) = ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) | |
| 51 | mpteq1 | ⊢ ( ( 𝐴 ↑m 𝐴 ) = ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) → ( 𝑢 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) = ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) | |
| 52 | 48 50 51 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) = ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
| 53 | simpll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝐴 ∈ 𝑉 ) | |
| 54 | 28 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top ) |
| 55 | 1 5 | elsymgbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑓 ∈ ( Base ‘ 𝐺 ) ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 56 | 55 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ∈ ( Base ‘ 𝐺 ) ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 57 | 56 | biimpa | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) |
| 58 | f1ocnv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) | |
| 59 | f1of | ⊢ ( ◡ 𝑓 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐴 ⟶ 𝐴 ) | |
| 60 | 57 58 59 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ◡ 𝑓 : 𝐴 ⟶ 𝐴 ) |
| 61 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑦 ∈ 𝐴 ) | |
| 62 | 60 61 | ffvelcdmd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) |
| 63 | eqid | ⊢ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) | |
| 64 | 63 10 | ptpjcn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐴 × { 𝒫 𝐴 } ) : 𝐴 ⟶ Top ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) → ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
| 65 | 53 54 62 64 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ) |
| 66 | 26 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝒫 𝐴 ∈ Top ) |
| 67 | fvconst2g | ⊢ ( ( 𝒫 𝐴 ∈ Top ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝒫 𝐴 ) | |
| 68 | 66 62 67 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝒫 𝐴 ) |
| 69 | 68 | oveq2d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn 𝒫 𝐴 ) ) |
| 70 | 65 69 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ∪ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn 𝒫 𝐴 ) ) |
| 71 | 52 70 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( 𝐴 ↑m 𝐴 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) Cn 𝒫 𝐴 ) ) |
| 72 | 47 48 49 71 | cnmpt1res | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) Cn 𝒫 𝐴 ) ) |
| 73 | 11 | oveq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) Cn 𝒫 𝐴 ) = ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ) |
| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) Cn 𝒫 𝐴 ) = ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ) |
| 75 | 72 74 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ) |
| 76 | snelpwi | ⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ∈ 𝒫 𝐴 ) | |
| 77 | 76 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → { 𝑦 } ∈ 𝒫 𝐴 ) |
| 78 | cnima | ⊢ ( ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ∧ { 𝑦 } ∈ 𝒫 𝐴 ) → ( ◡ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) “ { 𝑦 } ) ∈ ( TopOpen ‘ 𝐺 ) ) | |
| 79 | 75 77 78 | syl2anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) “ { 𝑦 } ) ∈ ( TopOpen ‘ 𝐺 ) ) |
| 80 | 46 79 | eqeltrrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ∈ ( TopOpen ‘ 𝐺 ) ) |
| 81 | 80 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ∈ ( TopOpen ‘ 𝐺 ) ) |
| 82 | fveq1 | ⊢ ( 𝑢 = 𝑓 → ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) | |
| 83 | 82 | eqeq1d | ⊢ ( 𝑢 = 𝑓 → ( ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ↔ ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ) ) |
| 84 | simplr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → 𝑓 ∈ ( Base ‘ 𝐺 ) ) | |
| 85 | 57 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) |
| 86 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → 𝑦 ∈ 𝐴 ) | |
| 87 | f1ocnvfv2 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ) | |
| 88 | 85 86 87 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ) |
| 89 | 83 84 88 | elrabd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) |
| 90 | ssrab2 | ⊢ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( Base ‘ 𝐺 ) | |
| 91 | 90 | a1i | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( Base ‘ 𝐺 ) ) |
| 92 | 15 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 93 | 92 | biimpa | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) |
| 94 | 62 | ad2antrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) |
| 95 | f1ocnvfv | ⊢ ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝐴 ) → ( ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝑥 ‘ 𝑦 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) ) | |
| 96 | 93 94 95 | syl2anc | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝑥 ‘ 𝑦 ) = ( ◡ 𝑓 ‘ 𝑦 ) ) ) |
| 97 | simplrr | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) | |
| 98 | eleq1 | ⊢ ( ( ◡ 𝑥 ‘ 𝑦 ) = ( ◡ 𝑓 ‘ 𝑦 ) → ( ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ↔ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) | |
| 99 | 97 98 | syl5ibrcom | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( ◡ 𝑥 ‘ 𝑦 ) = ( ◡ 𝑓 ‘ 𝑦 ) → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) ) |
| 100 | 96 99 | syld | ⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) ) |
| 101 | 100 | ralrimiva | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) ) |
| 102 | fveq1 | ⊢ ( 𝑢 = 𝑥 → ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) ) | |
| 103 | 102 | eqeq1d | ⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ↔ ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 ) ) |
| 104 | 103 | ralrab | ⊢ ( ∀ 𝑥 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 → ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) ) |
| 105 | 101 104 | sylibr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ∀ 𝑥 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) |
| 106 | ssrab | ⊢ ( { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 } ↔ ( { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 ) ) | |
| 107 | 91 105 106 | sylanbrc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 } ) |
| 108 | 39 | mptpreima | ⊢ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑡 ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( ◡ 𝑥 ‘ 𝑦 ) ∈ 𝑡 } |
| 109 | 107 108 | sseqtrrdi | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑡 ) ) |
| 110 | funmpt | ⊢ Fun ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) | |
| 111 | fvex | ⊢ ( ◡ 𝑥 ‘ 𝑦 ) ∈ V | |
| 112 | 111 39 | dmmpti | ⊢ dom ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) = ( Base ‘ 𝐺 ) |
| 113 | 91 112 | sseqtrrdi | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ dom ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) |
| 114 | funimass3 | ⊢ ( ( Fun ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∧ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ dom ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ↔ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑡 ) ) ) | |
| 115 | 110 113 114 | sylancr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ↔ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ⊆ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑡 ) ) ) |
| 116 | 109 115 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) |
| 117 | eleq2 | ⊢ ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } → ( 𝑓 ∈ 𝑣 ↔ 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ) | |
| 118 | imaeq2 | ⊢ ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) = ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ) | |
| 119 | 118 | sseq1d | ⊢ ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) ) |
| 120 | 117 119 | anbi12d | ⊢ ( 𝑣 = { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } → ( ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ↔ ( 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) ) ) |
| 121 | 120 | rspcev | ⊢ ( ( { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ∈ ( TopOpen ‘ 𝐺 ) ∧ ( 𝑓 ∈ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ { 𝑢 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑢 ‘ ( ◡ 𝑓 ‘ 𝑦 ) ) = 𝑦 } ) ⊆ 𝑡 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) |
| 122 | 81 89 116 121 | syl12anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑡 ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) |
| 123 | 122 | expr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( ◡ 𝑓 ‘ 𝑦 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) |
| 124 | 43 123 | sylbid | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ 𝒫 𝐴 ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) |
| 125 | 124 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ∀ 𝑡 ∈ 𝒫 𝐴 ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) |
| 126 | 24 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 127 | 12 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) |
| 128 | simpr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → 𝑓 ∈ ( Base ‘ 𝐺 ) ) | |
| 129 | iscnp | ⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝒫 𝐴 ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) ) ) | |
| 130 | 126 127 128 129 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑡 ∈ 𝒫 𝐴 ( ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ‘ 𝑓 ) ∈ 𝑡 → ∃ 𝑣 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑓 ∈ 𝑣 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) “ 𝑣 ) ⊆ 𝑡 ) ) ) ) ) |
| 131 | 36 125 130 | mpbir2and | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑓 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) |
| 132 | 131 | ralrimiva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) |
| 133 | cncnp | ⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) ) ) | |
| 134 | 24 12 133 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) ) ) |
| 135 | 134 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) : ( Base ‘ 𝐺 ) ⟶ 𝐴 ∧ ∀ 𝑓 ∈ ( Base ‘ 𝐺 ) ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) CnP 𝒫 𝐴 ) ‘ 𝑓 ) ) ) ) |
| 136 | 35 132 135 | mpbir2and | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ) |
| 137 | fvconst2g | ⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) = 𝒫 𝐴 ) | |
| 138 | 26 137 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) = 𝒫 𝐴 ) |
| 139 | 138 | oveq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) ) = ( ( TopOpen ‘ 𝐺 ) Cn 𝒫 𝐴 ) ) |
| 140 | 136 139 | eleqtrrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝐴 × { 𝒫 𝐴 } ) ‘ 𝑦 ) ) ) |
| 141 | 10 24 25 28 140 | ptcn | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ∈ 𝐴 ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) ) |
| 142 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 143 | 5 142 | grpinvf | ⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 144 | 2 143 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 145 | 144 | feqmptd | ⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 146 | 1 5 142 | symginv | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ◡ 𝑥 ) |
| 147 | 146 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ◡ 𝑥 ) |
| 148 | 32 | feqmptd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ◡ 𝑥 = ( 𝑦 ∈ 𝐴 ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) |
| 149 | 147 148 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑦 ∈ 𝐴 ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) |
| 150 | 149 | mpteq2dva | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ∈ 𝐴 ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) ) |
| 151 | 145 150 | eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ∈ 𝐴 ↦ ( ◡ 𝑥 ‘ 𝑦 ) ) ) ) |
| 152 | xkopt | ⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) | |
| 153 | 26 152 | mpancom | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) |
| 154 | 153 | oveq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) = ( ( TopOpen ‘ 𝐺 ) Cn ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) ) |
| 155 | 141 151 154 | 3eltr4d | ⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
| 156 | eqid | ⊢ ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) | |
| 157 | 156 | xkotopon | ⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top ) → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ) |
| 158 | 26 26 157 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ) |
| 159 | frn | ⊢ ( ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) → ran ( invg ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ) | |
| 160 | 2 143 159 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → ran ( invg ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 161 | cndis | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝒫 𝐴 Cn 𝒫 𝐴 ) = ( 𝐴 ↑m 𝐴 ) ) | |
| 162 | 12 161 | mpdan | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 Cn 𝒫 𝐴 ) = ( 𝐴 ↑m 𝐴 ) ) |
| 163 | 21 162 | sseqtrrd | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) ⊆ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) |
| 164 | cnrest2 | ⊢ ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ∧ ran ( invg ‘ 𝐺 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( Base ‘ 𝐺 ) ⊆ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) → ( ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ↔ ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) ) ) | |
| 165 | 158 160 163 164 | syl3anc | ⊢ ( 𝐴 ∈ 𝑉 → ( ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ↔ ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) ) ) |
| 166 | 155 165 | mpbid | ⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) ) |
| 167 | 153 | oveq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝐺 ) ) ) |
| 168 | 167 11 | eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) = ( TopOpen ‘ 𝐺 ) ) |
| 169 | 168 | oveq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( TopOpen ‘ 𝐺 ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝐺 ) ) ) = ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 170 | 166 169 | eleqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 171 | eqid | ⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) | |
| 172 | 171 142 | istgp | ⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) ) |
| 173 | 2 9 170 172 | syl3anbrc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ TopGrp ) |