This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a set A is a group. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 28-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | symggrp.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| Assertion | symggrp | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symggrp.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | eqidd | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 3 | eqidd | ⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 1 4 5 | symgcl | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 8 | 1 4 5 | symgcl | ⊢ ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) ∈ ( Base ‘ 𝐺 ) ) |
| 9 | 1 4 5 | symgov | ⊢ ( ( 𝑓 ∈ ( Base ‘ 𝐺 ) ∧ 𝑔 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐺 ) 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) |
| 10 | 8 9 | symggrplem | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 12 | 1 | idresperm | ⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) |
| 13 | 1 4 5 | symgov | ⊢ ( ( ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( I ↾ 𝐴 ) ∘ 𝑥 ) ) |
| 14 | 12 13 | sylan | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( I ↾ 𝐴 ) ∘ 𝑥 ) ) |
| 15 | 1 4 | elsymgbas | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↔ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 16 | 15 | biimpa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) |
| 17 | f1of | ⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → 𝑥 : 𝐴 ⟶ 𝐴 ) | |
| 18 | fcoi2 | ⊢ ( 𝑥 : 𝐴 ⟶ 𝐴 → ( ( I ↾ 𝐴 ) ∘ 𝑥 ) = 𝑥 ) | |
| 19 | 16 17 18 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ∘ 𝑥 ) = 𝑥 ) |
| 20 | 14 19 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( I ↾ 𝐴 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 21 | f1ocnv | ⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) | |
| 22 | 21 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 23 | 1 4 | elsymgbas | ⊢ ( 𝐴 ∈ 𝑉 → ( ◡ 𝑥 ∈ ( Base ‘ 𝐺 ) ↔ ◡ 𝑥 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 24 | 22 15 23 | 3imtr4d | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝐺 ) → ◡ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ◡ 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 26 | 1 4 5 | symgov | ⊢ ( ( ◡ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) = ( ◡ 𝑥 ∘ 𝑥 ) ) |
| 27 | 25 26 | sylancom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) = ( ◡ 𝑥 ∘ 𝑥 ) ) |
| 28 | f1ococnv1 | ⊢ ( 𝑥 : 𝐴 –1-1-onto→ 𝐴 → ( ◡ 𝑥 ∘ 𝑥 ) = ( I ↾ 𝐴 ) ) | |
| 29 | 16 28 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑥 ∘ 𝑥 ) = ( I ↾ 𝐴 ) ) |
| 30 | 27 29 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ◡ 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) = ( I ↾ 𝐴 ) ) |
| 31 | 2 3 7 11 12 20 25 30 | isgrpd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |