This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcn.2 | ⊢ 𝐾 = ( ∏t ‘ 𝐹 ) | |
| ptcn.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| ptcn.4 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| ptcn.5 | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ Top ) | ||
| ptcn.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | ptcn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcn.2 | ⊢ 𝐾 = ( ∏t ‘ 𝐹 ) | |
| 2 | ptcn.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | ptcn.4 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 4 | ptcn.5 | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ Top ) | |
| 5 | ptcn.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
| 8 | toptopon2 | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 9 | 7 8 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 10 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( TopOn ‘ ∪ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 11 | 6 9 5 10 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 12 | 11 | fvmptelcdm | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 13 | 12 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 14 | 13 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 15 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
| 16 | mptelixpg | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ 𝐼 𝐴 ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 | 14 17 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 19 | 1 | ptuni | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ Top ) → X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
| 20 | 3 4 19 | syl2anc | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → X 𝑘 ∈ 𝐼 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ 𝐾 ) |
| 22 | 18 21 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ∈ ∪ 𝐾 ) |
| 23 | 22 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) : 𝑋 ⟶ ∪ 𝐾 ) |
| 24 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 25 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝐼 ∈ 𝑉 ) |
| 26 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝐹 : 𝐼 ⟶ Top ) |
| 27 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) | |
| 28 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 29 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑧 ∈ 𝑋 ) | |
| 30 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 31 | 2 30 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑋 = ∪ 𝐽 ) |
| 33 | 29 32 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → 𝑧 ∈ ∪ 𝐽 ) |
| 34 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 35 | 34 | cncnpi | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn ( 𝐹 ‘ 𝑘 ) ) ∧ 𝑧 ∈ ∪ 𝐽 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 36 | 28 33 35 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 37 | 1 24 25 26 27 36 | ptcnp | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑧 ) ) |
| 38 | 37 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑋 ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑧 ) ) |
| 39 | pttop | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ Top ) → ( ∏t ‘ 𝐹 ) ∈ Top ) | |
| 40 | 3 4 39 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) ∈ Top ) |
| 41 | 1 40 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 42 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 43 | 41 42 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 44 | cncnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) : 𝑋 ⟶ ∪ 𝐾 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑧 ) ) ) ) | |
| 45 | 2 43 44 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) : 𝑋 ⟶ ∪ 𝐾 ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑧 ) ) ) ) |
| 46 | 23 38 45 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑘 ∈ 𝐼 ↦ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |