This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set for a product topology when all factors are the same. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptuniconst.2 | ⊢ 𝐽 = ( ∏t ‘ ( 𝐴 × { 𝑅 } ) ) | |
| Assertion | pttoponconst | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝑋 ↑m 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptuniconst.2 | ⊢ 𝐽 = ( ∏t ‘ ( 𝐴 × { 𝑅 } ) ) | |
| 2 | id | ⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | 2 | ralrimivw | ⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 | fconstmpt | ⊢ ( 𝐴 × { 𝑅 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) | |
| 5 | 4 | fveq2i | ⊢ ( ∏t ‘ ( 𝐴 × { 𝑅 } ) ) = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) |
| 6 | 1 5 | eqtri | ⊢ 𝐽 = ( ∏t ‘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) |
| 7 | 6 | pttopon | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝑋 ) ) |
| 8 | 3 7 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ X 𝑥 ∈ 𝐴 𝑋 ) ) |
| 9 | toponmax | ⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝑅 ) | |
| 10 | ixpconstg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑅 ) → X 𝑥 ∈ 𝐴 𝑋 = ( 𝑋 ↑m 𝐴 ) ) | |
| 11 | 9 10 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → X 𝑥 ∈ 𝐴 𝑋 = ( 𝑋 ↑m 𝐴 ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → ( TopOn ‘ X 𝑥 ∈ 𝐴 𝑋 ) = ( TopOn ‘ ( 𝑋 ↑m 𝐴 ) ) ) |
| 13 | 8 12 | eleqtrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝑋 ↑m 𝐴 ) ) ) |