This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a set A is a submonoid of the monoid of endofunctions on A . (Contributed by AV, 18-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgsubmefmnd.m | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| symgsubmefmnd.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | ||
| symgsubmefmnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | symgsubmefmnd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgsubmefmnd.m | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | symgsubmefmnd.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 3 | symgsubmefmnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 4 | 2 3 | symgbas | ⊢ 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } |
| 5 | inab | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∩ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ) = { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1→ 𝐴 ∧ 𝑓 : 𝐴 –onto→ 𝐴 ) } | |
| 6 | df-f1o | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 ↔ ( 𝑓 : 𝐴 –1-1→ 𝐴 ∧ 𝑓 : 𝐴 –onto→ 𝐴 ) ) | |
| 7 | 6 | bicomi | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐴 ∧ 𝑓 : 𝐴 –onto→ 𝐴 ) ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) |
| 8 | 7 | abbii | ⊢ { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1→ 𝐴 ∧ 𝑓 : 𝐴 –onto→ 𝐴 ) } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } |
| 9 | 5 8 | eqtr2i | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } = ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∩ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ) |
| 10 | 1 | injsubmefmnd | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) |
| 11 | 1 | sursubmefmnd | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) |
| 12 | insubm | ⊢ ( ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ∧ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∩ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ) ∈ ( SubMnd ‘ 𝑀 ) ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∩ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| 14 | 9 13 | eqeltrid | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) |
| 15 | 4 14 | eqeltrid | ⊢ ( 𝐴 ∈ 𝑉 → 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) |