This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of a topological group with nonempty interior is open. Alternatively, dual to clssubg , the interior of a subgroup is either a subgroup, or empty. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgntr.h | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| Assertion | subgntr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgntr.h | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | df-ima | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | 1 3 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 7 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) | |
| 8 | 5 7 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ Top ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐽 ∈ Top ) |
| 10 | simpl2 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 11 | 3 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 | 10 11 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) | |
| 14 | 6 13 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
| 15 | 12 14 | sseqtrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 16 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 17 | 16 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) |
| 18 | 9 15 17 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) |
| 19 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) | |
| 20 | 6 18 19 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 21 | 20 | resmptd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 22 | 21 | rneqd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 23 | 2 22 | eqtrid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 24 | simpl1 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 ∈ TopGrp ) | |
| 25 | simpr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 26 | 16 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 27 | 9 15 26 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 28 | simpl3 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 29 | 27 28 | sseldd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
| 30 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 31 | 30 | subgsubcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
| 32 | 10 25 29 31 | syl3anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
| 33 | 12 32 | sseldd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) |
| 34 | eqid | ⊢ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) | |
| 35 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 36 | 34 3 35 1 | tgplacthmeo | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 37 | 24 33 36 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 38 | hmeoima | ⊢ ( ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ 𝐽 ) | |
| 39 | 37 18 38 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ 𝐽 ) |
| 40 | 23 39 | eqeltrrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝐽 ) |
| 41 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 42 | 24 41 | syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 43 | 11 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 44 | 43 | sselda | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 45 | 20 28 | sseldd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 46 | 3 35 30 | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = 𝑥 ) |
| 47 | 42 44 45 46 | syl3anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = 𝑥 ) |
| 48 | ovex | ⊢ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ V | |
| 49 | eqid | ⊢ ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) | |
| 50 | oveq2 | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ) | |
| 51 | 49 50 | elrnmpt1s | ⊢ ( ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∧ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ V ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 52 | 28 48 51 | sylancl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 53 | 47 52 | eqeltrrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 54 | 10 | adantr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 55 | 32 | adantr | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
| 56 | 27 | sselda | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
| 57 | 35 | subgcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 58 | 54 55 56 57 | syl3anc | ⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 59 | 58 | fmpttd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) : ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⟶ 𝑆 ) |
| 60 | 59 | frnd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) |
| 61 | eleq2 | ⊢ ( 𝑢 = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) ) | |
| 62 | sseq1 | ⊢ ( 𝑢 = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) → ( 𝑢 ⊆ 𝑆 ↔ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) ) | |
| 63 | 61 62 | anbi12d | ⊢ ( 𝑢 = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) → ( ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ↔ ( 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∧ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) ) ) |
| 64 | 63 | rspcev | ⊢ ( ( ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝐽 ∧ ( 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∧ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) |
| 65 | 40 53 60 64 | syl12anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) |
| 66 | 65 | ralrimiva | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑆 ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) |
| 67 | eltop2 | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝑆 ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) ) | |
| 68 | 8 67 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑆 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝑆 ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) ) |
| 69 | 66 68 | mpbird | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ∈ 𝐽 ) |