This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anbrc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl3anbrc.2 | ⊢ ( 𝜑 → 𝜒 ) | ||
| syl3anbrc.3 | ⊢ ( 𝜑 → 𝜃 ) | ||
| syl3anbrc.4 | ⊢ ( 𝜏 ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) | ||
| Assertion | syl3anbrc | ⊢ ( 𝜑 → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anbrc.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl3anbrc.2 | ⊢ ( 𝜑 → 𝜒 ) | |
| 3 | syl3anbrc.3 | ⊢ ( 𝜑 → 𝜃 ) | |
| 4 | syl3anbrc.4 | ⊢ ( 𝜏 ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) | |
| 5 | 1 2 3 | 3jca | ⊢ ( 𝜑 → ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) |
| 6 | 5 4 | sylibr | ⊢ ( 𝜑 → 𝜏 ) |