This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The discrete topology on a set A . Part of Example 2 in Munkres p. 77. (Contributed by FL, 17-Jul-2006) (Revised by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distop | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniss | ⊢ ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ⊆ ∪ 𝒫 𝐴 ) | |
| 2 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 3 | 1 2 | sseqtrdi | ⊢ ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ⊆ 𝐴 ) |
| 4 | vuniex | ⊢ ∪ 𝑥 ∈ V | |
| 5 | 4 | elpw | ⊢ ( ∪ 𝑥 ∈ 𝒫 𝐴 ↔ ∪ 𝑥 ⊆ 𝐴 ) |
| 6 | 3 5 | sylibr | ⊢ ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴 ) |
| 7 | 6 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴 ) |
| 8 | 7 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴 ) ) |
| 9 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 10 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) | |
| 11 | ssinss1 | ⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ) | |
| 12 | 11 | a1i | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑥 ⊆ 𝐴 → ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ) ) |
| 13 | vex | ⊢ 𝑦 ∈ V | |
| 14 | 13 | inex2 | ⊢ ( 𝑥 ∩ 𝑦 ) ∈ V |
| 15 | 14 | elpw | ⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ↔ ( 𝑥 ∩ 𝑦 ) ⊆ 𝐴 ) |
| 16 | 12 15 | imbitrrdi | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑥 ⊆ 𝐴 → ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) |
| 17 | 10 16 | sylbi | ⊢ ( 𝑦 ∈ 𝒫 𝐴 → ( 𝑥 ⊆ 𝐴 → ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) |
| 18 | 17 | com12 | ⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑦 ∈ 𝒫 𝐴 → ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) |
| 19 | 9 18 | sylbi | ⊢ ( 𝑥 ∈ 𝒫 𝐴 → ( 𝑦 ∈ 𝒫 𝐴 → ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) |
| 20 | 19 | ralrimiv | ⊢ ( 𝑥 ∈ 𝒫 𝐴 → ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) |
| 21 | 20 | rgen | ⊢ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 |
| 22 | 21 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) |
| 23 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 24 | istopg | ⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝒫 𝐴 → ∪ 𝑥 ∈ 𝒫 𝐴 ) ∧ ∀ 𝑥 ∈ 𝒫 𝐴 ∀ 𝑦 ∈ 𝒫 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 𝐴 ) ) ) |
| 26 | 8 22 25 | mpbir2and | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) |