This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symggrp.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| symginv.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| symginv.3 | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | symginv | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝑁 ‘ 𝐹 ) = ◡ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symggrp.1 | ⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) | |
| 2 | symginv.2 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | symginv.3 | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 4 | 1 2 | elsymgbas2 | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∈ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 5 | 4 | ibi | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| 6 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐹 ∈ 𝐵 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) |
| 8 | cnvexg | ⊢ ( 𝐹 ∈ 𝐵 → ◡ 𝐹 ∈ V ) | |
| 9 | 1 2 | elsymgbas2 | ⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 ∈ 𝐵 ↔ ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 10 | 8 9 | syl | ⊢ ( 𝐹 ∈ 𝐵 → ( ◡ 𝐹 ∈ 𝐵 ↔ ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐴 ) ) |
| 11 | 7 10 | mpbird | ⊢ ( 𝐹 ∈ 𝐵 → ◡ 𝐹 ∈ 𝐵 ) |
| 12 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 13 | 1 2 12 | symgov | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ ◡ 𝐹 ∈ 𝐵 ) → ( 𝐹 ( +g ‘ 𝐺 ) ◡ 𝐹 ) = ( 𝐹 ∘ ◡ 𝐹 ) ) |
| 14 | 11 13 | mpdan | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ( +g ‘ 𝐺 ) ◡ 𝐹 ) = ( 𝐹 ∘ ◡ 𝐹 ) ) |
| 15 | f1ococnv2 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐴 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝐴 ) ) | |
| 16 | 5 15 | syl | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝐴 ) ) |
| 17 | 1 2 | elbasfv | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 ∈ V ) |
| 18 | 1 | symgid | ⊢ ( 𝐴 ∈ V → ( I ↾ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 19 | 17 18 | syl | ⊢ ( 𝐹 ∈ 𝐵 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 20 | 14 16 19 | 3eqtrd | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ( +g ‘ 𝐺 ) ◡ 𝐹 ) = ( 0g ‘ 𝐺 ) ) |
| 21 | 1 | symggrp | ⊢ ( 𝐴 ∈ V → 𝐺 ∈ Grp ) |
| 22 | 17 21 | syl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐺 ∈ Grp ) |
| 23 | id | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵 ) | |
| 24 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 25 | 2 12 24 3 | grpinvid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ◡ 𝐹 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝐹 ) = ◡ 𝐹 ↔ ( 𝐹 ( +g ‘ 𝐺 ) ◡ 𝐹 ) = ( 0g ‘ 𝐺 ) ) ) |
| 26 | 22 23 11 25 | syl3anc | ⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑁 ‘ 𝐹 ) = ◡ 𝐹 ↔ ( 𝐹 ( +g ‘ 𝐺 ) ◡ 𝐹 ) = ( 0g ‘ 𝐺 ) ) ) |
| 27 | 20 26 | mpbird | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝑁 ‘ 𝐹 ) = ◡ 𝐹 ) |