This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt1res.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| cnmpt1res.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| cnmpt1res.5 | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) | ||
| cnmpt1res.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) ) | ||
| Assertion | cnmpt1res | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1res.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| 2 | cnmpt1res.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | cnmpt1res.5 | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) | |
| 4 | cnmpt1res.6 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) ) | |
| 5 | 3 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) |
| 6 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 8 | 3 7 | sseqtrd | ⊢ ( 𝜑 → 𝑌 ⊆ ∪ 𝐽 ) |
| 9 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | cnrest | ⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) ∧ 𝑌 ⊆ ∪ 𝐽 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐿 ) ) |
| 11 | 4 8 10 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐿 ) ) |
| 12 | 1 | oveq1i | ⊢ ( 𝐾 Cn 𝐿 ) = ( ( 𝐽 ↾t 𝑌 ) Cn 𝐿 ) |
| 13 | 11 12 | eleqtrrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
| 14 | 5 13 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |