This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a set A is a topological monoid. Formerly part of proof for symgtgp . (Contributed by AV, 23-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efmndtmd.g | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| Assertion | efmndtmd | ⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ TopMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndtmd.g | ⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | 1 | efmndmnd | ⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
| 3 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 4 | 1 3 | efmndtopn | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝑀 ) ) = ( TopOpen ‘ 𝑀 ) ) |
| 5 | distopon | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) | |
| 6 | eqid | ⊢ ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) | |
| 7 | 6 | pttoponconst | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ) |
| 8 | 5 7 | mpdan | ⊢ ( 𝐴 ∈ 𝑉 → ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ) |
| 9 | 1 3 | efmndbas | ⊢ ( Base ‘ 𝑀 ) = ( 𝐴 ↑m 𝐴 ) |
| 10 | 9 | eleq2i | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ↔ 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) |
| 11 | 10 | biimpi | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑀 ) → 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) |
| 12 | 11 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝑀 ) → 𝑥 ∈ ( 𝐴 ↑m 𝐴 ) ) ) |
| 13 | 12 | ssrdv | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝑀 ) ⊆ ( 𝐴 ↑m 𝐴 ) ) |
| 14 | resttopon | ⊢ ( ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ∈ ( TopOn ‘ ( 𝐴 ↑m 𝐴 ) ) ∧ ( Base ‘ 𝑀 ) ⊆ ( 𝐴 ↑m 𝐴 ) ) → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝑀 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝑀 ) ) ) | |
| 15 | 8 13 14 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝑀 ) ) ∈ ( TopOn ‘ ( Base ‘ 𝑀 ) ) ) |
| 16 | 4 15 | eqeltrrd | ⊢ ( 𝐴 ∈ 𝑉 → ( TopOpen ‘ 𝑀 ) ∈ ( TopOn ‘ ( Base ‘ 𝑀 ) ) ) |
| 17 | eqid | ⊢ ( TopOpen ‘ 𝑀 ) = ( TopOpen ‘ 𝑀 ) | |
| 18 | 3 17 | istps | ⊢ ( 𝑀 ∈ TopSp ↔ ( TopOpen ‘ 𝑀 ) ∈ ( TopOn ‘ ( Base ‘ 𝑀 ) ) ) |
| 19 | 16 18 | sylibr | ⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ TopSp ) |
| 20 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 21 | 1 3 20 | efmndplusg | ⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ ( Base ‘ 𝑀 ) , 𝑦 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) |
| 22 | eqid | ⊢ ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) = ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) | |
| 23 | distop | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) | |
| 24 | eqid | ⊢ ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) | |
| 25 | 24 | xkotopon | ⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ Top ) → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ) |
| 26 | 23 23 25 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ) |
| 27 | cndis | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝒫 𝐴 Cn 𝒫 𝐴 ) = ( 𝐴 ↑m 𝐴 ) ) | |
| 28 | 5 27 | mpdan | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 Cn 𝒫 𝐴 ) = ( 𝐴 ↑m 𝐴 ) ) |
| 29 | 13 28 | sseqtrrd | ⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝑀 ) ⊆ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) |
| 30 | disllycmp | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Locally Comp ) | |
| 31 | llynlly | ⊢ ( 𝒫 𝐴 ∈ Locally Comp → 𝒫 𝐴 ∈ 𝑛-Locally Comp ) | |
| 32 | 30 31 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ 𝑛-Locally Comp ) |
| 33 | eqid | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) , 𝑦 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ↦ ( 𝑥 ∘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) , 𝑦 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ↦ ( 𝑥 ∘ 𝑦 ) ) | |
| 34 | 33 | xkococn | ⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝒫 𝐴 ∈ 𝑛-Locally Comp ∧ 𝒫 𝐴 ∈ Top ) → ( 𝑥 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) , 𝑦 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ↦ ( 𝑥 ∘ 𝑦 ) ) ∈ ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ×t ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
| 35 | 23 32 23 34 | syl3anc | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) , 𝑦 ∈ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ↦ ( 𝑥 ∘ 𝑦 ) ) ∈ ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ×t ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
| 36 | 22 26 29 22 26 29 35 | cnmpt2res | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( Base ‘ 𝑀 ) , 𝑦 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑥 ∘ 𝑦 ) ) ∈ ( ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ×t ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
| 37 | 21 36 | eqeltrid | ⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝑀 ) ∈ ( ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ×t ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
| 38 | xkopt | ⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) | |
| 39 | 23 38 | mpancom | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ) |
| 40 | 39 | oveq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) = ( ( ∏t ‘ ( 𝐴 × { 𝒫 𝐴 } ) ) ↾t ( Base ‘ 𝑀 ) ) ) |
| 41 | 40 4 | eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) = ( TopOpen ‘ 𝑀 ) ) |
| 42 | 41 41 | oveq12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ×t ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) = ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) ) |
| 43 | 42 | oveq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ×t ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) = ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
| 44 | 37 43 | eleqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ) |
| 45 | vex | ⊢ 𝑥 ∈ V | |
| 46 | vex | ⊢ 𝑦 ∈ V | |
| 47 | 45 46 | coex | ⊢ ( 𝑥 ∘ 𝑦 ) ∈ V |
| 48 | 21 47 | fnmpoi | ⊢ ( +g ‘ 𝑀 ) Fn ( ( Base ‘ 𝑀 ) × ( Base ‘ 𝑀 ) ) |
| 49 | eqid | ⊢ ( +𝑓 ‘ 𝑀 ) = ( +𝑓 ‘ 𝑀 ) | |
| 50 | 3 20 49 | plusfeq | ⊢ ( ( +g ‘ 𝑀 ) Fn ( ( Base ‘ 𝑀 ) × ( Base ‘ 𝑀 ) ) → ( +𝑓 ‘ 𝑀 ) = ( +g ‘ 𝑀 ) ) |
| 51 | 48 50 | ax-mp | ⊢ ( +𝑓 ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 52 | 51 | eqcomi | ⊢ ( +g ‘ 𝑀 ) = ( +𝑓 ‘ 𝑀 ) |
| 53 | 3 52 | mndplusf | ⊢ ( 𝑀 ∈ Mnd → ( +g ‘ 𝑀 ) : ( ( Base ‘ 𝑀 ) × ( Base ‘ 𝑀 ) ) ⟶ ( Base ‘ 𝑀 ) ) |
| 54 | frn | ⊢ ( ( +g ‘ 𝑀 ) : ( ( Base ‘ 𝑀 ) × ( Base ‘ 𝑀 ) ) ⟶ ( Base ‘ 𝑀 ) → ran ( +g ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ) | |
| 55 | 2 53 54 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → ran ( +g ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ) |
| 56 | cnrest2 | ⊢ ( ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ∈ ( TopOn ‘ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) ∧ ran ( +g ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ∧ ( Base ‘ 𝑀 ) ⊆ ( 𝒫 𝐴 Cn 𝒫 𝐴 ) ) → ( ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ↔ ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) ) ) | |
| 57 | 26 55 29 56 | syl3anc | ⊢ ( 𝐴 ∈ 𝑉 → ( ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ) ↔ ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) ) ) |
| 58 | 44 57 | mpbid | ⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) ) |
| 59 | 41 | oveq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( ( 𝒫 𝐴 ↑ko 𝒫 𝐴 ) ↾t ( Base ‘ 𝑀 ) ) ) = ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( TopOpen ‘ 𝑀 ) ) ) |
| 60 | 58 59 | eleqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( TopOpen ‘ 𝑀 ) ) ) |
| 61 | 52 17 | istmd | ⊢ ( 𝑀 ∈ TopMnd ↔ ( 𝑀 ∈ Mnd ∧ 𝑀 ∈ TopSp ∧ ( +g ‘ 𝑀 ) ∈ ( ( ( TopOpen ‘ 𝑀 ) ×t ( TopOpen ‘ 𝑀 ) ) Cn ( TopOpen ‘ 𝑀 ) ) ) ) |
| 62 | 2 19 60 61 | syl3anbrc | ⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ TopMnd ) |