This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv would be the special case of A being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funimass3 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ 𝐴 ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 2 | ssel | ⊢ ( 𝐴 ⊆ dom 𝐹 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹 ) ) | |
| 3 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ↔ 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) | |
| 4 | 3 | ex | ⊢ ( Fun 𝐹 → ( 𝑥 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ↔ 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) ) |
| 5 | 2 4 | syl9r | ⊢ ( Fun 𝐹 → ( 𝐴 ⊆ dom 𝐹 → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ↔ 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) ) ) |
| 6 | 5 | imp31 | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ↔ 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 7 | 6 | ralbidva | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 8 | 1 7 | bitrd | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 9 | dfss3 | ⊢ ( 𝐴 ⊆ ( ◡ 𝐹 “ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( ◡ 𝐹 “ 𝐵 ) ) | |
| 10 | 8 9 | bitr4di | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐴 ) ⊆ 𝐵 ↔ 𝐴 ⊆ ( ◡ 𝐹 “ 𝐵 ) ) ) |