This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem toponuni

Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion toponuni ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = 𝐽 )

Proof

Step Hyp Ref Expression
1 istopon ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ↔ ( 𝐽 ∈ Top ∧ 𝐵 = 𝐽 ) )
2 1 simprbi ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = 𝐽 )