This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrab | ⊢ ( 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 2 | 1 | sseq2i | ⊢ ( 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ 𝐵 ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
| 3 | ssab | ⊢ ( 𝐵 ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 4 | dfss3 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ∀ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ) | |
| 5 | 4 | anbi1i | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ↔ ( ∀ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) |
| 6 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ∀ 𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) | |
| 7 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 8 | 5 6 7 | 3bitr2ri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) |
| 9 | 2 3 8 | 3bitri | ⊢ ( 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ↔ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) |