This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a topological group". Definition 1 of BourbakiTop1 p. III.1. (Contributed by FL, 18-Apr-2010) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istgp.1 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| istgp.2 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | istgp | ⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istgp.1 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | istgp.2 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 3 | elin | ⊢ ( 𝐺 ∈ ( Grp ∩ TopMnd ) ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( 𝐺 ∈ ( Grp ∩ TopMnd ) ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ) ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 5 | fvexd | ⊢ ( 𝑓 = 𝐺 → ( TopOpen ‘ 𝑓 ) ∈ V ) | |
| 6 | simpl | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → 𝑓 = 𝐺 ) | |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( invg ‘ 𝑓 ) = ( invg ‘ 𝐺 ) ) |
| 8 | 7 2 | eqtr4di | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( invg ‘ 𝑓 ) = 𝐼 ) |
| 9 | id | ⊢ ( 𝑗 = ( TopOpen ‘ 𝑓 ) → 𝑗 = ( TopOpen ‘ 𝑓 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑓 = 𝐺 → ( TopOpen ‘ 𝑓 ) = ( TopOpen ‘ 𝐺 ) ) | |
| 11 | 10 1 | eqtr4di | ⊢ ( 𝑓 = 𝐺 → ( TopOpen ‘ 𝑓 ) = 𝐽 ) |
| 12 | 9 11 | sylan9eqr | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → 𝑗 = 𝐽 ) |
| 13 | 12 12 | oveq12d | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( 𝑗 Cn 𝑗 ) = ( 𝐽 Cn 𝐽 ) ) |
| 14 | 8 13 | eleq12d | ⊢ ( ( 𝑓 = 𝐺 ∧ 𝑗 = ( TopOpen ‘ 𝑓 ) ) → ( ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) ↔ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 15 | 5 14 | sbcied | ⊢ ( 𝑓 = 𝐺 → ( [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) ↔ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 16 | df-tgp | ⊢ TopGrp = { 𝑓 ∈ ( Grp ∩ TopMnd ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg ‘ 𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) } | |
| 17 | 15 16 | elrab2 | ⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ ( Grp ∩ TopMnd ) ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 18 | df-3an | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ) ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) | |
| 19 | 4 17 18 | 3bitr4i | ⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) |